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Abstract. Models of magnetic stars are constructed by the method of
the magnetic charge distribution (MCD). The surface magnetic field is
the linear summation of the vector components of the individual fields
of virtual magnetic monopoles, which combine to magnetic dipoles and
multipoles. The MCD-method relates to the construction of a vector field
out of its sources and vortices, which is comfortable for progamming on a
computer and possesses a wide range of applicability, e.g., for a decentered
dipole or flat dipoles under the surface like sun spots.

A theoretical derivation is given for the calculation of the magnetic
surface field and the entire Stokes vector. This yields the algorithms for
drawing the magnetic map of the star on the base of the model.1

The structure of the magnetic field of a star on its surface is covered
from observation by a lot of information destroying processes. For the recon-
struction of the original surface distribution from the final observational values
all these processes have to be inverted. In contrary to this, a straight-forward
calculation can be carried out in any case. For this we give here the theoretical
foundation on the MCD-method as outlined already in previous papers [3-9].

The calculation of magnetic fields in stars has a long history. We refer
especially to Oetken [1], who modeled the star as an equatorially symmetric
rotator. Krause and Rädler [2] treated the stellar magnetism by the action
of an electromagnetic dynamo.
We use as generators for the magnetic field virtual magnetic charges.

The magnetic field is a vector field, which is defined completely by its wells
and whirls – or scientifically called: sources and vortices. The MCD-method
relates only to the virtual magnetic sources using the algorithm for a monopole.
With B as the field vector, the absence of sources is expressed by the relation
div B =0. The magnetic field lines are closed and have neither a beginning nor
an ending point, i.e., magnetic monopoles do not exist in reality.

1Submitted to: Proceedings of a workshop on Magnetic Fields across the
Hertzsprung-Russel Diagram. IAU Conference in Santiago, Chile, 15-19 January 2001,
ASP Conference Series, 2001, Vol. 248, p. 333-336
eds. G. Mathys, S.K. Solanki, and D.T. Wickramsinghe. (Preprint: E. Gerth)
Publication quoted by Harvard: http://adsabs.harvard.edu/full/2001ASPC..248..333G
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However, a magnetic dipole, like an electric dipole, consists of two charges of
opposite sign, which are firmly coupled with a magnetic moment

M = Q l , (1)

where Q is the “magnetic charge” and l is the length difference of the dipole
center between the two charge locations. Thus the magnetic moment is a vector
and undergoes all rules of vector algebra. This has the consequence, that the
virtual magnetic charges of dipoles and multipoles may formally be treated like
separated individual field sources with arbitrary spatial distribution – provided
the the sum of all charges is zero. The treatment of the magnetic charges as
individual and separated field sources has an important advantage: the location
of a charge is determined by its 3 spatial coordinates. But now we have to
distinguish between poles and charges.

If the charge is displaced from the center of the star, the polar coordinates (r
radius, ϕ longitude, δ latitude) determine its location. Then by transformation
to Cartesian coordinates

x = r cos δ cosϕ
y = r cos δ sinϕ (2)
z = r sin δ

the distance from the center to the i-th point of the source is (with a = r/R
representing the fraction of the star’s radius):

r2 = R2[(cos δ cosϕ− ai cos δi cosϕi)2 + (cos δ sinϕ− ai cos δi sinϕi)2+
+ (sin δ−ai sin δi)2]. (3)

The magnetic charge Q produces a central symmetric potential
U = Q/(4πR) with the radius R, from which the field strength is derived by the
gradient

B = – grad U . (4)

The gradient is a vector of 3 components, which span a space with 3 orthogonal
unity vectors as Cartesian coordinates i, j, k. Then we have for each point of
the sphere in the polar orthogonal system the gradient

grad U = ∂U
∂r

dr
dx

i+ ∂U
∂r

dr
dy

j+ ∂U
∂r

dr
dz

k. (5)

If we use for polar coordinates only the radius r and simplify the constant with
the charge to C = −Q/4π, then the potential U = −C/r yields dU/dr = −C/r2.
The differential quotients along the 3 orthogonal polar coordinates are:

Br = ∂U/∂r = (C/r3)[cos δ(cosϕ + sinϕ) + sin δ]
Bϕ = ∂U/∂ϕ = (aC/r3) cos δ(cosϕ−sinϕ) (6)
Bδ = ∂U/∂δ = (aC/r3)[cos δ − sin δ(sinϕ + cosϕ)]

These equations are the basic relations for the calculation of the magnetic field
strength distribution over the star’s surface for a single monopole. The dif-
ferential quotients represent the magnetic field vector at the surface of the star.
The mapping of the magnetic surface structure relates to these values.
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In the case of a dipole, a superposition of two monopole fields of opposite
sign takes place. The summation of the fields of monopoles can arbitrarily
be continued. Only, for magnetic fields the pair-like combination of magnetic
charges has to be obeyed, because the sum of the charges must be zero.

The resultant values of the magnetic field strength distributed over the
stellar surface represent the map of the star B(ϕ, δ). The globe of the star
is seen by the observer under different aspects, caused by its rotation and the
inclination i to the rotational axis. The visible disk with ε as the angle from its
center is vignetted by the limb darkening according to the empirical formula

k = 1−0.4 cos ε . (7)

For the visibility of the star by the observer we define a window function
W (i, ε, δ, ϕ), containing the inclination i, the projection of each surface element
on the line of sight, and the limb darkening parameter ε. W (i, ε, δ, ϕ) averages
and normalizes the magnetic map distribution function B(ϕ, δ):

Beff(t) =

π/2∫
δ=−π/2

2π∫
ϕ=0

B(δ,ϕ)W (i,ε,δ,ϕ−t)dϕdδ

π/2∫
δ=−π/2

2π∫
ϕ=0

W (i,ε,δ,ϕ−t)dϕdδ

(8)

This is the general relation between the magnetic field map and the observable
integral radiation flux over the visible stellar surface, which we use especially
for the magnetic field with all its vector components. The integral formula gives
the integral mean of the disk seen by the observer and comprises the convolu-
tion integral, which represents the rotation of the star with its map B(ϕ, δ)
behind the window W (i, ε, δ, ϕ). The variable t characterizes the rotation at
the time of the momentary orientation angle. For the numerical calculation
by a computer, we replace the integral transformations by matrix multiplica-
tion. The map is discretized into surface areas as matrix elements, each element
representing the integral mean value of this area.

The calculation of the magnetic field strength yields a triple of values to
every point of the stellar surface, the visibility of which depends on the condi-
tions bound to geometry, phase and physics of the star. The magnetic field
strength, which the observer measures by the Zeeman splitting of spectral lines,
is the result of

1. projection by the coordinate orientation,
2. weighting by different areas of the elements and
3. vignetting by limb-darkening.

The computation relates to the fact, that the gravity center of the line profiles
of different height and position is given by the mean of the centers weighted by
the profile integrals. Thus, we weight the magnetic field vector, projected onto
the line of sight, of all surface elements with their area size, spherical projection
and limb darkening and integrate them over the visible hemisphere. The radial
direction of the field vector in every element on the surface is given in Cartesian
coordinates with the unity vectors i, j, k and the geographical coordinates of
the longitude ϕ and the latitude δ to

ar = a = cos δ cosϕi+cos δ sinϕj+sin δk . (9)
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The two orthogonal tangential directions to the normal direction are:
aϕ = ∂a/∂ϕ = − cos δ sinϕi+cos δ cosϕj (10)
aδ = ∂a/∂δ = − sin δ cosϕi−sin δ sinϕj+cos δk (11)

With the 3 spherical components Br, Bϕ, and Bδ, the magnetic field vector at
the surface of the star is given in Cartesian coordinates:

B = Br ar + Bϕ aϕ + Bδ aδ (12)
The magnetic field components are seen by the observer from a special aspect
projected onto the line of sight, which we denote as the vector v:

v = sin i cos ti+sin i sin tj− cos ik (13)
The projection of the magnetic field vector B related to each point of the
surface is carried out by a scalar multiplication adjusted to the vector of the
line of sight v

Bv = B v = [Br ar + Bϕ aϕ + Bδ aδ ] v, (14)
which is the component V of the Stokes vector by circularly polarized light:

Bv = B v = Br[cos δ sin i(cosϕ cos t + sinϕ sin t)− sin δ cos i] +
+ Bϕ[cos δ sin i(cosϕ sin t− sinϕ cos t)] +
+ Bδ[− sin δ sin i(cosϕ cos t + sinϕ sin t)− cos δ cos i] (15)

Likewise, we can calculate the projection onto the plane perpendicularly to the
line of sight, as the scalar products of the two orthogonal directions to the
vector v. The 2 perpendicular vectors to v are found by permutation of the
unity vectors i, j, k:

q = sin i sin ti− cos ij+sin i cos tk (16)
u = − cos ii + sin i sin tj + sin i cos tk (17)

Thus, the field components of the linear polarization, namely the Stokes para-
meters Q and U, are derived by scalar multiplication:

Bq = B q = Br(cos δ cosϕ sin i sin t− cos δ sinϕ cos i + sin δ sin i cos t) +
+ Bϕ(− cos δ sinϕ sin i sin t−cos δ cosϕ cos i) + (18)
+ Bδ(− sin δ cosϕ sin i sin t + sin δ sinϕ cos i + cos δ sin i cos t)

Bu = B u = Br(− cos δ cosϕ cos i + cos δ sinϕ sin i sin t + sin δ sin i cos t) +
+ Bϕ(cos δ sinϕ cos i + cos δ cosϕ sin i sin t) +
+ Bδ(sin δ cosϕ cos i−sin δ sinϕ sin i sin t+cos δ sin i cos t) (19)

The components Bq, Bu, and Bv represent 3 of the 4 Stokes parameters. The
parameter I is the mean field strength as the square root of the intensity:

Bmean =
√

B2
q + B2

u + B2
v (20)

If we take out of equation (20) only the Q and U components,

Bcross =
√

B2
q + B2

u , (21)

then the plane of the crossed linear polarization perpendicularly to the line of
sight comes in view. Bcross multiplied with the projected rotational velocity v
sin i is an observable magnitude (Bagnulo [10]: “crossover”).

As an example for magnetic modeling and mapping of a real star we give
the calculated distribution of the surface magnetic field of HD 37776 in [9].2)

2) Publication quoted by Harvard: http://adsabs.harvard.edu/full/2001ASPC..248..337G
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The algorithms for modeling and mapping of magnetic fields have been
realized in a computer program written by E. Gerth.
Fig. 1 shows the Mercator map and the globe of a magnetic monopole.

Fig. 1. Mercator−map and spherical projection (globe) of a positively charged monopole ⊕.

The iso−magnetic lines mark the topographic location of equal magnetic field strength.

1. Charge Q = 1 (relative units) 3. Longitude ϕ = 135o

2. Radius r = 0.5 (fraction of the radius) 4. Latitude δ = 45o

Further examples of stellar magnetic mapping are demonstrated in a review
(Vienna, Workshop on Magnetic Stars, 2007) over ten years since the beginning
of the Magnetic Charge Method.3
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