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Abstract. The  magnetic  surface  field  of  a  star  is  constructed  by  a  straight-forward  calculation 
underlying a  model  of  spatially  distributed magnetic  charges with their  superposed potentials,  for 
which the theoretic foundation is given. The calculation is realized by a computer program, which fits 
the calculated phase curves to the observed ones by variation of parameters and iterative least squares 
optimization. All observational magnetic data compiled up to now may be used. The magnetic map of 
the star is drawn on the base of the model by a few parameters. From the map the phase curves and the 
profiles of the spectral lines are derived.

Key words:  Stars; magnetic fields

1. Introduction

The structure of the magnetic field distribution of 
a star over its surface is hidden from observation by 
a  lot  of  information  destroying  processes,  leaving 
only the time-dependent modulation of the integral 
radiation flux by the star's rotation open for the dis-
entangling of topographical features like the magnetic 
poles, because there is no direct way to draw a map 
of the star. For the reconstruction of the original sur-
face distribution from the final observational values 
all these processes have to be inverted. The Inver-
sion, however, has no definite solution and is more or 
less impracticable. The difficulties bound to the gen-
erally ill-posed inverse problem are well-known and 
have been considered by Khokhlova et al. (1986) and 
by Gerth et al. (1997). Contrary to this a straight-
forward calculation can be carried out in any case. 
Assuming physically reasonable conditions, we use 
only a few parameters to construct a magnetic map 
at the surface of the star. This is a matter of trial 
and error. At first a  model  will be constructed us-
ing reasonable but, nevertheless, arbitrary parame-
ters. In this field Bagnulo et al. (1996, 1999a,b) have 
developed independently of ours an effective method, 
which uses modern spectral observation techniques. 
Our method can cope with only the values of the lon-
gitudinal magnetic field strength, as they have been 
measured since Babcock's first observations of mag-
netic stars in 1947. By variation of the parameters 
and Iteration a fitting of the calculated phase curves 
to the observational data can be achieved using the 
least squares optimization

2. The calculation of stellar magnetic
    fields

The calculation of magnetic fields in stars has an 
history. We refer here especially to the papers  of 
Oetken (1977, 1979), who modeled the star  as an 
equatorially  Symmetrie  rotator  for  different  cases 
(53Cam,  a2CVn,  ßCrB,  HD  71866,  HD  32633, 
73Dra, 49Cam, HD 126515, HD 98088, HD 49976, 
HD 24712, HD 188041, HD 111133, HD 153882, HD 
125248),  which  gave  the  impetus  to  the  present 
paper. Oetken relates to Krause and Raedler (1980), 
Krause  (1995),  who  attempted  to  calculate  the 
magnetic field structure of a star as generated by 
the action of a dynamo. The solution of the hydro-
magnetic differential equations  of the dynamo is 
displayed  as  a  row  of  Legendre  functions,  the 
coefficients of which have to be determined like free 
parameters using numerical fitting procedures. The 
set of constants renders an analytical representation 
of the distribution of the field over the sphere but on 
its own does not allow any insight into the physical 
background. Besides of this, the field is specialized 
to the physical conditions of the dynamo and does 
not account for otherwise generated fields. It should 
be mentioned that the calculation of stellar surface 
fields is valid for all hydrodynamic processes, which 
may  cause  magnetic  fields  as  well  as  velocity 
fields.  Both fields, magnetic or/and velocity ones, 
produce shifts of the line profiles in the spectrum. 
The  magnetic  field,  of  course,  originates  in  the 
interior  of  the  star  and  penetrates  the  spherical 
surface  of  the  star's  atmosphere.  Only  from  this 
location   the  magnetic field  can  be   observed  by 
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the  Zeeman  displacement  of  spectral  lines.  The 
mapping  of  the  surface  field  is  the  two-
dimensional  cartographic  arrangement  of  the 
magnetic features of  the outermost layer of the 
star. Any conclusion from the outer field to the 
inner  one  lacks  Information  if  therefore  no 
physical grounds are given. In any case we have 
to take the whole spatial distribution of the field 
into account. The magnetic field itself is a vector 
field,  which  is  defined  completely  by  its 
sources  and whirls.  If we know the magnitudes 
and  the  spatial  locations  of  them,  we  can 
calculate the components of the field vector in 
any point of the surrounding space.
     Sources and whirls constitute different kinds of 
field  generators.  Sources  exist  as  individual 
monopoles,  from  which  the  field  lines  diverge 
radially,  whereas  whirls  are  circulated  by  closed 
field  rings  with  a  left  or  right  handed  rotation 
around  an  axial  vector.  The  interaction  of  both 
sources  and  whirls  is  governed  by  Maxwell’s 
equations  and  Ohm’s  law  (Raedler  1995),  which 
gives the condition for the excitation of a dynamo 
in the electro-conducting turbulent medium of the 
star.  This  is  well  established  for  the  Sun.  The 
magnetic stars,  which we investigate,  are mainly 
A-stars. They show a very quiet behavior without 
turbulence,  so  that  a  recent  dynamo  cannot  act. 
Obviously,  we  have  to  deal  with  a  long-living 
permanent magnetism. Therefore, we restrict the 
following  considerations  of  the  magnetic  field 
structures in stars only to the stationary state, which 
is relevant for the mapping. In stationary conditions 
sources or whirls can exist  separately. Sometimes 
only one kind of them is present.
     Knowing that magnetic sources do not occur in 
reality,  the stationary field is represented only by 
the whirls. With B as the field vector the absence of 
sources is expressed by the relation

div B  =  0 .               (1)

This  means,  that  the  magnetic  field  lines  are 
circularly  closed  and  have  no  beginning  and  no 
ending  point.  However,  we  can  set  such  points 
artificially, if we cut up the ring of a closed field 
line, whereby a magnetic dipole is created. Thus a 
full  analogy to  an electrical  field  can be brought 
about. Such a magnetic dipole is self-consisting like 
an electric dipole of two oppositely signed charges. 
The difference to the formal agreement of electrical 
and  magnetic  fields  is  that  electrical  charges  are 
real  individual  sources  but  the  analog  magnetic 
charges  Q  are  only  virtual  sources,  which  are 
coupled  steadfastly  to  a  dipole.  However,  the 
magnetic dipole is a real physical quantity with a 
magnetic moment

M = Q l ,              (2)

where  Q  is  the  “magnetic  charge”  and  l is  the 
length difference  of the dipole center  to one of the 

two charge locations. Thus the magnetic moment is 
a vector and undergoes all rules of vector algebra. 
This has the following consequences: 

   1.  The magnetic moment produces a magnetic 
field environment of  dipole structure.
   2.  The  spatial  vector  fields  of  the  dipoles 
superpose by vector addition.
   3. The sum of several magnetic moments at the 
same location yields a resultant  magnetic moment
       maintaining its environmental dipole structure. 
   4. The length 2l spanning the distance between 
the virtual magnetic charges is an infinitesimal
       quantity  l → 0 for the mathematical dipole, but 
can take on real significance for separated
       charges as realized in form of a rod magnet.
   5. The virtual magnetic charges of dipoles and 
multipoles may formally be treated like separated
       individual field sources with arbitrary spatial 
distribution – provided the coupling of pairs with
       opposite sign and the sum of all charges being 
zero according to (1) is preserved:

∑Qi  =   0                                                             (3)
   i

3. The physical significance 
    of magnetic charges
The treatment of the magnetic charges as individual 
and  separated  field  sources  renders  an  important 
advantage because the arrangement of the locations 
in  the  star’s  body  becomes  very  simple:  each 
location of a charge is determined by the 3 spatial 
coordinates. The magnetic moment of the dipole as 
a  vector  is  defined  by  2  point  locations  or  6 
coordinate  values.  There  is  no  restriction  to  a 
mathematical  dipole  or  to  any  spherical  or  axial 
symmetry.  Dipoles  and  multipoles  might  be 
decentered  anyhow.  Even  sunspots  as  narrowly 
located  sources  under  the  sun’s  surface  may  be 
described easily.
     Equation (2) is derived for a magnetic dipole. 
However,  it  might  be  understood  also  as  the 
magnetic moment  Mi of a single charge Qi in the 
distance  li from the center  of  the sphere.  By this 
way  the  advantage  of  the  spatial  arrangement  of 
magnetic charges is preserved. Then the magnetic 
dipole moment Md is the vector sum

 Md  =  Q1 l1  +  Q2 l2     with    Q2  =  - Q1  .        (4)
                                 
But now we have to distinguish between poles and 
charges. The field strength at the poles, which we 
reduce  from  observation,  is  not  a  primary 
magnitude  but  only  a  derived  one.  The  primary 
magnitude is the magnetic moment  M = Q l, from 
which  all  other  magnitudes  of  the  magnetic  field 



are  derived.  These  magnitudes  have  often  be 
confused, so that the physical dimensions of them 
should be born in mind.
      By astronomers the magnetic field strength  B = 
µH (B magnetic  induction,  H magnetic  field 
strength,  µ magnetic permeability) is usually mea-
sured in the unit gauss (G). Not differing from this 
habit, the magnetic charge at the center of a sphere 
of radius R with the field strength B at the surface 
is

Q = 4 π R² |B| .              (5)

Then  the  physical  dimension  of  the  magnetic 
charge is  field  strength times  surface area  (or  in 
units: gauss  * m²). Likewise, the dimension of the 
magnetic  moment  is:  field  strength times  volume 
(or: gauss * m³):

|M| = 4/3 π R³ |B|              (6)

The magnetic charge produces a central symmetric 
potential U at the surface of the sphere of the radius 
R:
U = Q/(4π R) .  (7)

If the charge is displaced from the center of the star, 
the  polar  coordinates  (r  radius,  ϕ longitude,  δ 
latitude) determine its  point  of  location.  Then by 
transformation to Cartesian coordinates

x = r cosδ cosϕ
y = r cosδ sinϕ             (8) 
z = r sin δ

we have  with  a  =  r/R  as  the  fraction  of  the 
star’s radius the distance from the center to the 
i-th point of the source 
r² =  R² [ (cos δ cos ϕ – ai cos δi cos ϕi)² +    
   + (cos δ sin ϕ – ai cos δi sin ϕi)² + (sin δ – ai sin δi) ] .    (9)

The potential of the i-th charge is

Ui = Qi/(4π ri) .           (10)

The potentials of several charges are superposed 
linearly:

U = ∑ Ui                                                  (11)
             i
Especially the potential Ud of a dipole with the 
charge Q and r+,r- for each source is given by

Ud =  (Q/4π) (1/r+ - 1/r-) .                            (12)

4. The construction of a potential field
    of a magnetic charge 

From  this  scalar  potential  the  field  strength  is 
derived by the gradient 

 B = - grad U .                                              (13)
The gradient is a vector of 3 components, which 
span a space with 3 orthogonal unity vectors as 
Cartesian or spherical coordinates.
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In  Cartesian  coordinates  x,y,z  we  have  with  the 
unity vectors i,j,k

                  ∂U      ∂U     ∂U 
grad U  =    i +  j +  k  .                           (14)
                  ∂x       ∂y      ∂z

     Likewise, we have for each point of the sphere 
in the polar orthogonal system of radius r, longitude 
ϕ and latitude δ  the gradient

        

                 ∂U dr      ∂U dr      ∂U dr
grad U  =    i +   j +   k  .            (15) 
                  ∂r dx       ∂r dy       ∂r dz 

     If we use for polar coordinates only the radius r 
and simplify the constant with the charge to 
C = - Q/4π, then the potential                          

U  =  - C/r                                                           (16)

yields                                               

 dU    =   C  
 d r          r²                                                          (17)

    The differential quotients, that gave the gradient 
along the 3 orthogonal polar coordinates,  are:   
 Br  =  ∂U/∂r    =  (C/r³) [cos δ (cos ϕ + sin ϕ) + sin δ] 
 Bϕ  =  ∂U/∂ϕ  =  (aC/r³) cos δ (cos ϕ– sin ϕ)            (18)
 Bδ  =  ∂U/∂δ   =  (aC/r³) [cos δ – sin δ (sin ϕ + cos ϕ)]

     These equations are the basic relations for the 
calculation of the magnetic field strength distribu-
tion over the star’s surface for a single monopole. 
The  differential  quotients  represent  the  3  coordi-
nates of the magnetic field at the surface of the star, 
which constitute the field vector.
 

     The mapping of the magnetic surface structure 
relates  to  these  values. In  the  case  of  a  dipole  a 
superposition of two monopole fields of  opposite 
sign takes  place.  The summation  of  the  fields  of 
monopoles  can arbitrarily  be  continued.  Only for 
magnetic  fields  the  pair-like  combination  of 
magnetic  charges  has  to  be  obeyed,  because  the 
sum of the charges must be zero.

      For the practical calculation on a computer the 
surface has to be divided in n*2n surface elements, 
which are arranged as a quadratic matrix with the 
rank 2n. Using the normal coordinates the longitude 
is divided in 2n and latitude done in n parts. The 3 
components of the magnetic vector are stored and 
may be recalled for other computations. By combi-
nation of the vector components the absolute value 
Bs is derived 

Bs  =   √ (Br²  +  Bϕ²  + Bδ ² ) ,                             (19)

which is regarded as the surface field in one of the 
elements.
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5. Observation of the integral radiation 
from the star
The  calculation  of  the  magnetic  field  strength 
renders  a  triple  of  values  to  every  point  of  the 
stellar  surface.  However,  the  visibility  of  such  a 
surface point depends on a lot of conditions bound 
to  geometry,  phase  and  physics  of  the  star.  In 
numerical computation such point is the center of 
an element.
     The  resultant  values  of  the  magnetic  field 
strengths  distributed  over  the  stellar  surface 
represent the map of the star  B(ϕ,δ). The globe of 
the  star  is  seen  by  the  observer  under  different 
aspects, caused by its rotation and the inclination i 
to the  rotational  axis.  Besides of  this,  the  visible 
disk is vignetted by the limb darkening according to 
the  empirical  formula  with  ε denoting  the  angle 
from the center of the disk

k  =  1 – 0.4 (cos ε) .                                        (20)

For  the  visibility  of  the  star  by  the  observer  we 
define  a  window function  W,  which  contains  the 
inclination i, the projection of each surface element 
to the line of sight, and the limb darkening.

                  π/2   2π

     ∫  ∫   B(δ,ϕ) W(i, δ, ϕ - t) dϕ dδ
           δ=-π/2  ϕ=0

Be,s  (t)  =   (21)
     π/2 2π

                  ∫   ∫  W(i,δ,ϕ - t) dϕ dδ
            δ =-π/2 ϕ =0
   

This is  the general relation between the magnetic 
field map and the observable integral radiation flux 
of any magnitude over the visible  stellar  surface, 
which we use especially for the magnetic field with 
all  its  vector components.  This formula holds for 
the effective  field  Be and for  the surface  field  Bs 

after equation (19). The integral formula gives the 
integral mean of the disk seen by the observer and 
contains the convolution integral, which represents 
the rotation of the star with its map B(ϕ,δ) behind 
the window W(i, δ, ϕ). The denominator makes the 
normalization.
     For the numerical calculation by a computer we 
replace  the  integral  transformations  by  matrix 
multiplication.  Therefore,  the  map  will  be 
discretized  into surface  areas  as  matrix  elements, 
each element representing the integral mean value 
of this area.

6. The effective magnetic field Be 

       and the mean surface field Bs

The  magnetic  field  strength,  which  the  observer 
measures by the Zeeman splitting of spectral lines, 
is the result of 

 projection by the coordinate orientation, 
 weighting by different areas of the elements and 
 vignetting by limb-darkening. 
The  resulting  vector  of  the  magnetic  field  by 
integration  over  the  visible  disk  of  the  star  is 
orientated anyhow, but  only the projection to  the 
line  of  sight  to  the  observer  gives  the  so  called 
“longitudinal field”  Be,  which is the mean value of 
the  radiation from all  visible  elements  influenced 
by the above mentioned conditions. The averaging 
rises  some  physical  problems  which  we  have  to 
consider in the following.  Usually we measure the 
(effective) stellar magnetic field from the Zeeman 
displacement  of  the  gravity  centers  of  the  line 
profiles  of  oppositely  circularly  polarized  light. 
What we call the “effective magnetic field” is not a 
mean value but already the result of weighting and 
convolution  of  the  radiation  flux  containing  the 
magnetic field information about the form and the 
position of the profiles of all surface elements.  In 
principle, the transmission of the flux through the 
atmosphere  has  to  be  treated  correctly  by  the 
methods of radiation transfer theory, rendering the 
spectral dependence of the limb darkening. In our 
computing program we relate to the fact,  that the 
gravity  center  of  two  profiles  of  different  height 
and position is  given by the mean of the  centers 
weighted by the profile integrals. Thus, we weight 
the magnetic field vector, projected onto the line of 
sight,  of  all  surface  elements  with their  spherical 
projection and limb darkening and integrate them 
over the visible hemi-sphere. 
     The  projection  of  the  magnetic  field  vector 
related to each point of the surface is carried out by 
a scalar multiplication of the magnetic field vector 
with the vector of the line of sight

s   =   cos δ cos ϕ i  +  cos δ sin ϕ j  +  sin δ k,          (22)

which yields the scalar field components F related 
to the 3 polar coordinates of the surface elements 
(index p)

Fr  =  Br (cos δp cos ϕp cos δ  +  sin δp sin δ)   
Fϕ  =  Bϕ (cos δp sin ϕp cos δ)              (23)
Fδ  =  Bδ (sin δp cos ϕp cos δ + cos δp sin δ)

This  projection  allows  the  calculation  of  the 
longitudinal magnetic field  Be. The components of 
the  vector  undergo  the  averaging  by  the  integral 
equation (21).
     Likewise, we can calculate the projection onto 
the plane perpendicularly to the line of sight, if we 
draw  the  scalar  products  of  the  two  orthogonal 
directions to the vector s in equation (22). Thus, the 
linear polarization (including all 4 Stokes vectors) is 
respected. Here we apply the projection only onto 
the line of sight, because the observational material 
avail-able to us has been obtained by means of a 
Zeeman-analyzer  in  the  light  path  of  a  spectro-
graph, splitting the spectrum in two parts of  left- 
and right handed circularly polarized light.



     If we calculate the surface field  Bs using the 
components (18) of the effective field components 
as in equation (19), then already the scalar intensity 
distribution of the absolute value of the vector is 
weighted,  vignetted  and  integrated  by  equation 
(21).  

7. The distribution of the magnetic field
    over the stellar surface 
    (magnetic mapping)
The  calculated  distribution  of  the  magnetic  field 
over  the  surface  can  be  represented  graphically. 
Thus a cartographic map of the star is drawn with 
topographical features of the magnitudes. Areas of 
the magnitudes are distinguished by colors and/or 
isolines.  The isolines are arranged as closed lines 
around  the  poles,  which  mark  the  most 
characteristic features of the map.
Mapping of a sphere is always a graphical problem. 
The  plane  (rightangular)  projection  corresponds 
well  to  the  matrix  arrangement  of  the  surface 
elements. In Fig 1 we demonstrate the mapping by 
a plane projection, which gives an overlook of the 
entire  spherical  surface  of  the  star  but  has  an 
extension of the longitude towards the poles.  We 
show this at an arbitrary example (Fig. 1).
     The sphere of the star is better shown in the 
correct perspective by transforming the coordinates 
into the orthographic equatorial projection. In this 
case only one half of the sphere can be seen so that 
the  two  opposite  hemispheres  of  180°  longitude 
difference give all surface information (Fig 2). 

8. Phase curves and line profiles
The  phase  curves  are  calculated  by  a  matrix 
convolution of the map resolved in matrix elements 
after  the  discretized  integral  transform  equation 
(21).  This corresponds to the rotation of the star, 
whereby  the  star  shows  periodically  different 
aspects to the observer. 
     The radiation from the surface elements, which 
is weighted by geometry, projection and vignetting, 
can be evaluated in a statistical frequency distribu-
tion  rendering  the  line  profile.  The  line  profiles 
contain  information  about  the  aspect  and  the 
surface structure of the field.
     The group of profiles with the phase step 0.05 in 
Fig 3 shows the  influence of  the aspect  onto the 
profile. For the above example of a central dipole 
with  the  north  pole  at  ϕ =  90°  and  δ =  45°  the 
aspect to the equator with i = 90° gives a sinusoidal 
phase curve with the crossover between the positive 
and the negative poles at the phase 0.5. In Fig 3 we 
see the characteristic rectangular profile with steep 
wings and plateau or dip within. The scatter is due 
to statistics and interference at the grid.  
     The study of the profile shapes is very important 
for the correct assessment of the line position for 
the  measurement  of magnetic  fields.  Often asym-
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metric profiles occur.  Then the  gravity center  and 
the  extreme  value  may  differ  significantly.  In 
special cases they are even in antiphase.

9. The complexity of magnetic and
    velocity fields   
Once more we point to the fact that magnetic and 
velocity fields act in the same manner, for they shift 
the profile in the spectrum by the Zeeman displace-
ment  or  by  the  Doppler  effect.  Normally  these 
effects  are  combined  in  a  close  complex.  The 
magnetic  profile  is  convoluted  by  the  rotation 
profile with all disturbances on account of surface 
inhomogeneities. In the case of an inhomogeneous 
distribution  of  chemical  elements  over  the  star’s 
surface the radiation has a spotty character, which 
results  in  a  spectral-photometric  modulation  by 
rotation.  The  photometric  distribution  acts  like  a 
transparency map covering the radiating surface. In 
the program a forth vector component is foreseen 
for  the  transparency,  which  allows  photometric 
modelling  for  its  own  but  also  weighting  of  the 
magnetically relevant radiation by multiplication.
     First tests have shown, that a complicate field 
structure  may  be  attributed  only  to  the  chemical 
inhomogeneities, so that higher multipoles need not 
to be accounted for. 
     Thus magnetic mapping and Doppler mapping 
are closely connected and use the same formalisms 
and algorithms for the calculation. 

10. Conclusions
The mapping of a magnetic star can be carried out 
on  the  basis  of  the  mathematical  treatment  of  a 
simplified model of a star with very few parameters 
in a straight-forward calculation. The model has to 
be brought in agreement with the real observations 
at magnetic stars. For this purpose a suited program 
is  used  as  a  tool.  Magnetic  and  transparency 
inhomogeneities in the star  are not  only formally 
but  also physically connected.  The pole region is 
usually also a region of accretion or depletion of 
elements, from which the radiation with the spectral 
information  about  magnetic  field  and  velocity 
emanates. The observational material about chemi-
cally peculiar stars, which has been compiled since 
more than fife decades, needs devices and computer 
algorithms for its analysis in order to investigate the 
stellar magnetism, its origin, its evolution, and its 
boundary conditions.
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Fig 1  Flat map with isolines of the magnetic field with the surface elements arranged as a matrix  

Fig 2  Spherical representation of the map in Fig 1 with the phases 0., 0.25, 0.5 and 0.75
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'igure 3: a) Map of the magnetic field of a dipole and phase curve for i = 90°. b) The group of the pwfile vrves with the 
phase step 0.05.
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	Qi  =   0                                                             (3)
	If the charge is displaced from the center of the star, the polar coordinates (r radius,  longitude,  latitude) determine its point of location. Then by transformation to Cartesian coordinates
	x = r cos cos
	we have with a = r/R as the fraction of the star’s radius the distance from the center to the i-th point of the source 
	r² =  R² [ (cos  cos  – ai cos i cos i)² +    
	   + (cos  sin  – ai cos i sin i)² + (sin  – ai sin i) ] .    (9)
	The potential of the i-th charge is
	Ui = Qi/(4 ri) .				          (10)
	The potentials of several charges are superposed linearly:
	U =  Ui	                                                 (11)
	             i	
	Especially the potential Ud of a dipole with the charge Q and r+,r- for each source is given by
	4. The construction of a potential field
	    of a magnetic charge 
	From this scalar potential the field strength is derived by the gradient 
	In Cartesian coordinates x,y,z we have with the unity vectors i,j,k
	                  U      U     U                                                               grad U  =    i +  j +  k  .                           (14)
	10. Conclusions
	The mapping of a magnetic star can be carried out on the basis of the mathematical treatment of a simplified model of a star with very few parameters in a straight-forward calculation. The model has to be brought in agreement with the real observations at magnetic stars. For this purpose a suited program is used as a tool. Magnetic and transparency inhomogeneities in the star are not only formally but also physically connected. The pole region is usually also a region of accretion or depletion of elements, from which the radiation with the spectral information about magnetic field and velocity emanates. The observational material about chemi-cally peculiar stars, which has been compiled since more than fife decades, needs devices and computer algorithms for its analysis in order to investigate the stellar magnetism, its origin, its evolution, and its boundary conditions.
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