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Summary

A simple four-parameter formula of the characteristic curve is derived on the basis of the theory of the
photographic process, making use of special approximations that allow for elementary integration. The
four parameters correspond to the saturation density, the opacity density, the step order of the
development centers, and the sensitivity — representing the main quantities of the characteristic curve.
The formula may easily be inverted and it is suited for interpolation of the characteristic curve, being
therefore appropriate for computerized sensitometric evaluation.

Zusammenfassung

Unter Anwendung spezieller Naherungen, die elementare Integrationen erlauben, wird eine einfache, vier-
parametrige Formel fur die Schwérzungskurve auf der Basis der Theorie des photographischen Prozesses
hergeleitet. Die vier Parameter entsprechen der Séttigungsschwérzung, der Opazitdt der Schicht bei der
Belichtung, der Reaktionsordnung der Entwicklungskeime und der Empfindlichkeit, womit die hauptsach-
lichen Groéfzen der Schwarzungsfunktion dargestellt werden kénnen.

Die Formel ist leicht invertierbar und eignet sich zur Interpolation der Schwéarzungskurve, womit sie in
einer rechnergestitzten sensitometrischen Auswertung eingesetzt werden kann.

Pesome

ITpocras, ¢ yeThlpbMa napamerpamu, GOpMyIa A IPEeICTABICHUA KPUBOH HMouYepHEHNA BHIBO-
AMTCA HA OCHOEe Teopuu dororpaduuecKkoro mpouecca IPU WCIOIB3OBAHHN CIENHAIBHBIX
ANIpoOKCHMAIN{, 03BOJAAIONINX DIeMeHTAPHOe HHTETPHPOBAHHE. DTHMY YeTHIPLMA IIapaMerpa-
MU, KOTOpbBle MpPeCTABIAIT OCHOBHBIE BEJMUYMHH XapaKTePUCTHUYECKON KpUBOI, ABIAITCA
HachlIeHHoe TIoYepHeHne, ONTHYECKas IIOTHOCT JOTOCIIOA NPU HKCIOBULNH, CTeeHDb PeaRIHN
TPOABUTEIBLHHX 1[EHTPOB U UyBCTBUTEJIBHOCTD.

Ita Jopmyna JTerko moaBepraerca o0pamleHUI0 W TaKMe IPUTOTHA 1774 WHTEPIOIAUUU KpHBOi
MOYEPHEHWsT, TIOATOMY OHA PEKOMEHIYeTcH [JIH BHUYHCINTEIRHBIX CEHCUTOMETPHYECKHX
00paloTOoK.

1) Dipl.-Ing. K. KroBEr died on Dec. 9th, 1988 at the age of 83. He was one of the leading engi-
neers in the field of film techniques of the nationally owned movie-producing enterprise DEFA,
engaged especially in the development of measuring and controlling methods for deriving quality
standards of raw film materials, The author is deeply indebted to him for a long and true friend-
ship ag well as for a fruitful scientific cooperation, giving among other things the incentive to
investigate the properties of the photographic emulsion represented by the characteristic curve.
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0. Introduetion

The “characteristic curve” is defined as the empirically determined and graphically
represented functional relation between exposure and density resulting after development
on a photographic layer, revealing the main characteristics of a photographic material
alike a passport image. Between the exposure and the resulting density there is included
the photographic process, which is veiled for direct insight by the nature of the light-
sensitive object so that sensitometry always was regarded as a matter alone of empirism.
Nevertheless, numerous proposals have been made for a mathematical formulation of
the characteristic curve, ag outlined in [11]; for example: the polynomial representation,
the arctan-function, the GAuss error integral, the BAxER function [1], and some more
just phenomenological functions — all having actually no direct connection with the
underlying physical process. Other mathematical treatments of the formulation of the
characteristic curve base on the theory of the photographic process, which has been
summarized in [11] and, recently, by EscHricH [2].

Despite the formula presented here can be found anywhere in both papers quoted last it seems
to be favourable to a full comprehension of the significance of the four “‘characteristic parameters”
to confine the derivation to the main roots, avoiding more redundancy — but without commit-
ting any loss of capability to generalization. Such a methodical variant of the derivation of the
blackening formula has been given in a (rather rarely distributed) report [12] on an TAU-Work-
shop on Astrophotography 1987 in Jena (GDR), that in general we will follow in this paper,
implementing some instructive completions.

1. Physieally founded statements for the derivation of the characteristic function

The photographic process, as well known, is an extraordinarily complex one, being in
this field of knowledge the main object of research hitherto pursued, so that it seems to
be quite impossible to put all these results together in a single formula. Such a global
description of the photographic process will probably never be achieved at all. Never-
theless, simplified models can be constructed, showing the main features in a general
way, and thus allowing a better insight into the process, which 1s otherwise obscured
by its own complexity.

Therefore, we group the considerations that influence the formation of the charac-
teristic curve in their order of importance:

The microprocesses in the crystal lattice of the silver halide during the exposure
The grain size distribution

The transfer of light radiation through the emulsion layer during the exposure
The shape of the developed silver grains

The development and further treatments of the photolayer

The after-treatment of the developed layer

S St ko=

In the following the points 5 and 6 are not considered closer because they are not essen-
tial for producing the typical form of the characteristic curve.

2. The microprocesses in the silver halide crystal

Since microprocesses in the crystal lattice are not directly observable, a broad latitude
is left for hypotheses and theories. Recent ideas on the photographic microprocesses are
based on the theories of GurNEY and MotT [13] with the completion by MrTcHELL [15]
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as summarized in [4]. In the present paper this wide field is not outlined. It should
only be mentioned that in the past there turned out two main orientations of the theory:

1. the reaction-kinetics theory,
2. the statistical theory.

The first to attempt to describe the characteristic curve by means of reaction kinetics
was ScHAUM [17] in 1909. The start of the statistical interpretation was made by Sir-
BERSTEIN [18] in 1922. There is an increasing number of followers as outlined in [8].
Both branches of the theory describe the same object and are, in principle, equivalent.
However, there are differences in describing the processing character of the creation
of development centers, for any process, naturally, progresses in time. The statistical
theory regards the statistics of photons and grains, but does not account for the time.
Therefore, this theory does not give any explanation of ScHwARzscHILD’s law, which
in the kinetics theory already emerges plausibly out of the basic statements [5], but
can be derived exactly |7, 9].

3. Schwarzsehild’s law of blackening

As shown in [5] the product of power functions EiP (E is intensity, t-time, p-SCHWARZSCHILD
exponent) introduced by ScHnwaRzSCHILD as an independent variable of the density function
can be interpreted as the result of a multi-step kinetic reaction of the build-up of latent image
specks, which trigger the reduction of the whole silver halide grain to metallic silver as develop-
ment centers. The explanation is given plausibly: The electron concentration ¢ produced by the
photoeffect in the lattice of the silver halide acts on cach step of the reaction chain by discharg-
ing the center, resulting in a transition from one step to the higher one. Regarding the electron
concentration ¢ and the acting time ¢, the total probability for the transition of » steps producing
a constant effect is the power product

ci® = const. (1)

If on one step — obviously the first — equilibrium is attained, then the time order reduces by
one step, yielding '

c®n—1 — const. (2)
In exposure ranges where the electron concentration is proportional to the intensity (the long-
time exposure, relevant in astrophotography), SCHWARZSCHILD s law

EtP = const, (3)
follows with

p=1—1/n. (4)

In the case of 4 steps we have the ScHWARZSCHILD exponent p — 0.75. The quantity = is the reac-
tion order of the centers representing the difference between the mean reaction order of the cen-
ters contained on all grains of the emulsion and the order (4) at which developability is reached.
A method for the empirical determination of n is described in [14].

The photographic effect of the exposure depends on the ScHWARZSCHILD product

H = Etw (5)

as an independent variable called the effective light quantity. The average number Z of centers
per grain depends on the effective exposure Hn linearly with a factor of proportionality £*, which
defines the sensitivity related to the developable grains,

z = ¢*Hn. (6}
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Relating, however, the sensitivity to the intensity E acting on each reaction step, we may write
instead of equation (6), using £* = &»,

zZ = (eH)n, (6a)

calling the quantities £* or ¢ the sensitivity coefficients. The effective light quantity H as being
the result of the kinetic process of the build-up of development centers has to be calculated for
correctness by an expense mathematical treatment using vectors, matrices, and tensors [10].
The ScHaWARZSCHILD product equation (3) represents an ingenious simplification for a limiting
cage [9], which facilitates all mathematical derivations that imply the kinetical result of the expo-
sure. Nevertheless, H may be replaced by a more general expression, either by the scalar product
of exposure matrices and development speck-step vectors [7, 9] or, more simply, by a term deriv-
ed from experimental data [11]

H=1[1+ ak)® — 1]¢t», (7)

which embraces the exposure regions of the normal and the inverse ScHWaARZSCHILD-effect. In
equation (7) @ denotes a sensitivity coefficient and & an exponent, which emerges theoretically [5]
to b = 1/2 but proves empirically to lie anywhere between the limits 1/2 < 5 < 1. In the follow-
ing the underlying expression for H is given only by equation (5).

4. The dependence of the sensitivity on the grain volume

The photoeffect affects the whole volume of the silver halide grain supplying the elec-
trons needed for the build-up of development centers. So it is plausible but also experi-
mentally proven that the sensitivity of a grain (in a wide range of small and average-
sized grains) increases proportionally with its volume,

e = qyl, (8)

where 7 denotes a coefficient for the sensitivity density and V the volume. Thus, the
number of development centers can be written

2 — nVH". 9)

5. The relation between the area density of the grains and the opfical density

The developed grains of a photographic layer are distributed statistically with respect
to their sizes and positions. The Porsson probability P(z) of the occupation z of one
cell of the honeycomb-like imagined layer by grains is

ZFexp (—2)
z!

P(z) = (10)

with Z denoting the mean occupation.
Since already one grain in the cell stops the light penetrating through the layer we have
with z = 0 the transmission probability

P(0) = exp (—3), (11)

called the transparency.
By definition of the density D as the decadic logarithm of the reciprocal transparency
there follows

D =log[l/exp (—2)] = zloge. (12)
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Taking into account that the mean occupation Z is given by multiplying the area den-
sity o of grains by the projected mean squared area @ of one grain, we obtain the well-
known formula of NurTiNng [16]

D =ygaloge (13)

expressing a linear relation between density and area density of grains. Defining, how-
ever, the density by the natural logarithm as we do in the following throughout, the mo-
dulus log e will be left out, simplifying by this way most of the analytical expressions
derived form any formula of the characteristic function. If the decadic logarithm is
preferred, then the modulus log e or its reciprocal has to be introduced as a factor.

6. The relation between the occupation number of centers and the grain area density

The Porssox probability that a silver halide grain is capable of being developed can be
written as

P;=1—-PO)=1—exp(—3), (14)

because at least one development center must be contained on the grain surface at-
tainable to the developer.

Using the proportionality found by Nurting we have with the equations (9) and (14),
introducing further the saturation density D, a first approach to the blackening
function, yielding already the typical sigmoid curvature of the characteristic curve,

D(H) = D1 — exp (—nVH")], (15)

which corresponds to the density formula of SveEpBERG [19].

7. The influence of the grain-size distribution

The silver halide crystals grow differently in the process of manufacturing the emulsion.
The crystallization can be comprehended as a kinetic process of forward and back
reactions, whereby the bigger crystals grow at the expense of the smaller ones. From
experimental results it is known that the grain sizes have a scatter like a logarithmic
normal distribution. Tt might be interesting, that such a distribution can be approxi-
mated by a sum of a few terms of exponential functions, which corresponds to the type
of solution of reaction kinetics equations.

The bell-shaped curve may be achieved approximately by a distribution function w(¥)
represented in the form of the difference of two exponential terms [11],

o(V) =exp (—x, V) —exp (—ax, V). (16)

However, it can be shown that the second term in equation (16) may be neglected, so
that the one-term exponential function

w(V) =exp (—aV) (17)

completely suffices.
The neglected term does not contribute considerably to the total density, because in
the corresponding part of the distribution

1. the sensitivity of the grains is low,
2. the volume of the grains is small,
3. the share in the total number of grains is inconsiderable.
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The form of the characteristic curve is determined essentially by the large grains. Only
in the region of the shoulder do the small grains become considerable. The influence of
the grain-size distribution may be formulated by the integral

D(H) = Dy [1 — NfoV"w(V) exp (—nVH") d V} (18)
0

representing the summation of the contribution to the density distribution.

In (18) N is a normalizing factor, and # denotes the “form exponent” depending on the
shape of the developed silver grains.

In the case of a spherical volume the density contribution of a grain is proportional to
the projection area, i. e. V23,

Such silver grains are produced by half-physical development condensating the entire
silver of the grain at the development center. In the extreme case of physical devel-
opment all silver is precipitated out of the solution phase regardless of the ditferent grain
sizes, making the density contribution independent of the grain size with a form expo-
nent » = 0.

Chemical development produces sponge-like silver conglomerates whose light absorp-
tion is proportional to the quantity of silver contained in a grain, which, in the extreme
case, makes the form exponent » = 1. In the normal case one can expect a form expoc-
nent lying between 2/3 < » < 1.

The integration of (18) may be performed with any grain size distribution one would
like. An interesting approach to the solution is the representation by a convolution
integral.

A distribution function consisting of a sum of exponential terms can be integrated par-
ticularly easily in an elementary way.

The only example we state here is the one-term exponential function according to (17),
which yields

1
D=Dg|1— . (19)

x+1
(1= 0)

In the case of more summands in the distribution function we obtain as the solution
a linear combination of terms like (19).

The sensitivity coefficient £ proves to be the ratio of the sensitivity density 5 and the
grain-size distribution coeffizient «

g = = (20)

and points to the strict correlation of sensitivity and grain size.

8. The influence of the radiative transfer

Passing through the opaque emulsion layer during exposure the light undergoes atte-
nuation by absorption and scattering at the crystals of the silver halide grains. The
correct attenuation function ¢(x) emerges as the solution of the integro-differential
equation of the radiative transfer process.
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A simple, but nevertheless sufficient solution is the exponential law of attenuation
after LAMBERT

Eeyy = E exp (~--i x), (21)
Lo
z denoting the depth and x, the thickness of the layer, § the optical density of the opa-
que emulsion coating, E the intensity and E.y the effective intensity. The LLAMBERT
law holds better the more absorption predominantes over scattering within the layer.
We restrict the attenuation function ¢(x) to the one-term exponential function because
of the difficulties arising in analytical integration in the case of using more compli-
cated functions.
The entire layer may be divided into an infinite set of infinitesimal layers, whose densi-
ties according to the elementary blackening function are superposed, yielding by sum-
mation of all partial densities the integral over the depth of the layer

D — D, {1 — N [ PlE), 1 da:}, (22)

N being a normalizing factor.

In the case of equal grain sizes the evaluation of the integral (22) turns out to be an expo-
nential integral function, i.e. a relatively complicated function [6]. Paradoxically, tak-
ing account of the grain size in the form of a sum of exponential functions like (16)
and (17) leads to a simplification of the analytical formulation of the blackening function,
which can be expressed in terms of just standard functions. (We are confronted with the
same effect as known for integral transformations — the FOUrTER and the LAPLACE
transformations.)

9. A simple but physically founded analytical characteristic function

The integration over the grain-size distribution and the thickness of the layer can be
together reprasented by the following double integral:

D =D, {1 — N fxn waxw(V) Py VEg(x), t]1dV d;v}. (23)
0 ¢

The integration of (23) with the simplifying restrictions

ScHEWARzZSCHILD’S blackening law is valid,

the sensitivity is proportional to the grain volume,

the grain-size distribution follows a one-term exponential law,
radiative transfer is given by LAMBERT’s law,

there is physical development with a form exponent x = 0

Sk W=

yields the formula

|
1 n
D Dy, In + (eH)

nd 1 + (eH)" exp (—nd)

(24)

with H = Et? (the SCHWARZSCHILD product) as an independent variable.
This formula representing the characteristic curve holds very well in the region of the
toe and satisfactorily over the quasi-linear middle part of the curve, but deviates in the



170 GERTH, E.: Derivation of a four-parameter density formula

region of the shoulder. This is because of the simplifications listed above, which affect
significantly only the shoulder of the curve.
The inversion of the formula (24) takes a form on as

1
1 1 —exp (né T?-—) "
H=— = (25)
&

T

enabling thus the unique coordination of the D and H values by a set of two simple
formulae.

The integration could be performed with fewer simplifications. The integrability of
(23) is preserved if we use for the grain-size distribution as many terms as one likes;
but only the form exponents x = 0 and » = 1 allow analytical integration [11]. Never-
theless, in every case a numerical integration could be performed, embracing all possible
relations correctly. In all those cases the simplicity of a short analytical formula as
well as the possibility of a direct inversion is lost.

10. The properties of the proposed blackening formula

The formula (24) contains only 4 parameters:

1. the saturation density D,

2. the optical density of the opaque emulsion layer 6,
3. the step order n,

4. the sensitivity e.

Therefore, only 4 values of the density spread over the characteristic curve are needed
in order to determinate the whole function, being sufficient for interpolation. With
more values an optimizing calculation could be carried out.
The characteristic curve drawn from the formula (24) is quite symmetrical to the point
of inflection. This becomes obvious if we take the slope by differentiation. The deriva-
tive

D, 1 1
¥ —
! 0 {1+ (eH)ynexp(—nd) 1+ (eH)"
consists of a difference of two LorEnTz-like terms with a coordinate shift between them.
The gradient curve is bell-shaped and mirror-symmetrical in every case as shown in

Fig. 1.
At the inflection point we have the gradient

(26)

Dy no
Vie = —5— tanh T’ (27)

showing that the gradient can only increase up to a limiting value given by the ratio
Dy/8, see Fig. 2.

The density at the inflection point is accurately

Do

o (28)

Dip = 2

in accordance with the torsion symmetry of the curve.
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-7 0 7

—— log H

Fig. 1. Qharacteristic curve calculated using equation (24) and the related slope after equation
(26), which exhibits a mirror-symmetrical bell-like shape. D, =2, =1,n =2, e = 1.

| | I
7 2 3

_,.__’6

Fig. 2. The dependence of the gradient at the inflection point of the characteristic curve on the
opacity density of the emulsion layer. D = 2, n = 2.

In order to demonstrate the influences of the parameters on the characteristic curve
represented by (24) two families of curves are presented below. Figure 3 shows the effect
of the step order ». For reasons of the kinetics theory of the step-like build-up of
developing centers [5, 7] the step order is Iimited to 1 = »n = 4, n being near 1 for high-
speed emulsions as used in astrophotography and being near 4 for unsensitized emulsions
of high contrast as used for printing graphical purposes [14]. We can see that the con-
trast increases while the sensitivity decreases with growing values of #. Varving n the
shape of the curve ig either contracted or expanded, respectively, in direction of the
abscissa, whereas the inflection point preserves its position at half the saturation den-
sity. This is because of the scale-determining effect of the exponent n in the power
function H”® on the logarithmic scale.

The exponent n has been used by de VaucouLEURs [20] to represent the toe of the cha-
racteristic curve by a power function.
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Fig. 4 demonstrates the effect of the optical density é of the cpaque emulsion layer.
Because of the increasing absorption in the layer during the exposure the curve is
stretched to a nearly linear middle part but also flattened with extension of the exposure
latitude and, of course, shifted to the less sensitive side. This effect may be produced
on a given photomaterial by dyes acting during the exposure. The dyes may be washed
out after the development, thus supplying a better transparency of the finally resulting
photograph. Such a method is recommended for correct reproduction in the printing
process.

The sensitivity parameter ¢ causes a shift along the log H-axis; likewise the saturation
density Dy, stretches the ordinate. Both influerces on the characteristic curve need not
be demonstrated explicitly. Tt should, moreover, be considered whether the coefficient
¢ could be used as a measure of the sensitivity because it is physically founded and inde-
pendent of particular practical references.

|
-2 -7 0 7 2

—— log H

Fig. 3. Family of characteristic curves by the parameter n. n = 1,2,3,4. D =2, =1,¢ = 1.

| l |
' =7 0 7 2 3

— log H

Fig. 4. Family of characteristic curves by the parameter § (D versus log H). § = 0.1, 0.5 1, 1.5,
2,3,4,6,8, D, =2,n=2,e=1.
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11. Signifieance and determination of the four “blackening parameters”

The four parameters D, 8, n, and ¢ represent physically founded “characteristic quan-
tities” of the blackening function (therefore called ‘“‘blackening parameters’), which
are valid also for more complicated versions of blackening formulae — may be either
analytical or empirical ones. In the 4-parameter formula (24) these magnitudes attain
their clearest manifestation. They may serve even for definitions as, e. g., the sensitivity,
the steepness, the linearity, the exposure latitude, the density modulation, the satura-
tion density. The 4 “blackening parameters” maintain their physical significance also
in optimization procedures applied to sensitometric measuring data as shown by EscH-
RICH [3], which lead to a simultaneous determination of the parameters as the whole
set. Moreover, three of these parameters, namely D, 6, and », may be determined sepe-
rately for their own; the fourth parameter ¢ depends to some degree on the others.
The measuring approach for the 4 parameters is:

1. D : The saturation density is to be measured on a totally overexposed and then developed
photographic material (excluding solarization and other photographic effects that the
formula (24) is not valid for).

2.8: The optical density of the opaque emulsion layer is to be measured on the undeveloped
emulsion layer of the photographic material. (The densitometer light should be of the
same spectral composition as that one used to expose the photographic material to be
investigated, but using minimal light quantities to avoid photolytic blackening during
the measurement.)

3.n: The development step order is to be determined by transforming the ordinate (D-axis)
of the characteristic curve into a logarithmic scale. The toe of the curve is formed by this
way to a straight line, the gradient being the parameter # [14]. This is because the limit-
ing case of formula (24) for diminishing light quantity H emerges to a power function

1 — exp (—ad)

D D _(eH)? . ,
no

(29)

the exponent n of which may be represented in double logarithmie coordinates as the
gradient.

4.¢:  The sensitivity is derived from the characterigtic curve by determining the parallel shift
of the curve along the log H-axis taking into account the knowledge of the other para-
meters determined already in advance, for ¢ is defined as the sensitivity of the individual
graing regardless of the radiative transfer taking place in the emulsion layer during the
exposure. Thus, in the region of the toe ¢ may be derived for a definite pair of values
H, D using equation (29), which would be quite in accordance with the usual definition
of the sensitivity as the light quantity at a definite low density level of the characteristic
curve,
Another approach is given by using the most characteristic point of the characteristic
curve: the inflection point. Then we have with the light quantity H,,, inserting equation
(28) into (25),

1 — exp (n_é)
1 2 (30)

Hip exp (_n?d) —1

which brings about that this formula does not contain the saturation density D . Since
the opacity density & decreases, the fraction containing » and 6 tends to unity. In the
limiting case, which corresponds to full transparency of the emulsion layer as being
valid for exposure on X.rays, the sensitivity parameter ¢ represents the reciprocal light
quantity at the inflection point, from which it is shifted off only by action of the opacity
density of the emulsion layer.

& =
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12. Conclusion

Allowing for special approximations of the complicated conditions of the photographic
process, a simple blackening formula related to 4 parameters can be derived, which
proves to be appropriate for different analytical treatments requiring a mathematical
formulation of the characteristic curve.

The derivation performed in this way makes it evident that the monotonical functio-
nal relation between exposure and density increasing from zero to the saturation level
as well as the sigmoid shape of the characteristic curve are caused in full already by the
statistics of size and location of the silver halide grains in the emulsion layer regardless
of the process of speck build-up within the grains — as we can see when we replace the
term (eH)" in equation (24) by the average number of centers per grain X = Z according
to equation (6), and defining

T = exp (—nd) (31)

as the effective total transparency of the opaque undeveloped emulsion layer, resulting
from the radiative transfer through the layer. We obtain then the more generalized
formula

1 14+ X

D=Leram 137

(32)

which reflects only the functional relation between the average occupation number of
development specks and the density, using as parameters the saturation density D,
and the eftfective transparency 7. Equation (32) can be regarded as normalized with
respect to n and ¢, The quantity X may be an arbitrary function (even a not monotoni-
cal one as in the case of solarization) that summarizes the result of the photographic
process taking place in the crystalline lattice of the silver halide grain, which can be
described — like before — as a function of the SoEwARzZscHILD product Et? or — with
a wider extension of validity — by equation (7) but done completely only by the full
application of the reaction kinetics theory [7, 10]. So, in the mathematical formulation
of the characteristic curve the photographic process and the shaping of the curve, which
otherwise is entangled awfully by complicated integrations, by this way will be (appro-
ximately) disentangled.

Furthermore, the 4-parameter formula is of practical use, too. Thus, the set of formulae
Joining the functionally related quantities H and D may be used to compute the charac-
teristic curves and the information transfer of a manifold copying process, rendering
even the possibility of control and computer-regulated optimization. The simplicity of
the formula (24) including its inverse version (25), makes it well-suited to application
in computer-programs, especially when a subroutine of such a formula is run frequently
as, e.g., for the recalculation of the intensity from densitometer tracks.

The formula (24) represents a basic version of a physically founded formulation of the
characteristic curve. The course of its derivation is open for any further generalization.
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