Sieben Aufsätze zur Reaktionskinetik

in Anwendung auf

Atom- und Kernphysik, Strahlungstransport, Schwingungen, Spektrallinienprofile, Pharmakokinetik

von

Horst Melcher und Ewald Gerth

Editor: Dr. Ewald Gerth

Potsdam 2009

Unikat

Seven articles on reaction kinetics

in application to

atomic and nuclear physics, radiative transfer, oscillations, spectral line-profiles, pharmacokinetics

Keywords:

dynamic process, reaction system, reaction-space, radiation transfer, absorption, Boltzmann's integro-differential equation, matrices, transformation, oscillations, line-profile-model, commutativity, time-reflection, impulse-behavior, pharmakokinetic reactions, bio-rhythms, frequency-pass, computer-programs

Provided individual distribution:

Prof. Dr. habil. Horst Melcher Prof. Dr. habil. Fritz-Joachim Schütte Prof. Dr. habil. Wolfgang Regenstein Dr. habil. Manfred Gläser Dr. sc. Helmut Domke Dr. Wolfgang Schwenke

Installed in INTERNET by the web-address:
www.ewald-gerth.de/horst-melcher.pdf

Vorwort

Sieben Publikationen zur Reaktionskinetik – entstanden in den Jahren 1973 bis 1982 in enger Gemeinschaftsarbeit der Autoren Prof. Dr. HORST MELCHER und Dr. EWALD GERTH – sind in dem vorliegenden Buch thematisch und methodisch zusammengestellt. Das gemeinsame Thema der Arbeiten ist die Beschreibung des Reaktionsverlaufes als eine Kausalfolge MARKOWscher Prozesse, welche analytisch durch Matrizen dargestellt werden kann. Die analoge Übertragungung auf andere Anwendungsgebiete mit prozessartigem Charakter offenbart eine überraschende Multivalenz der Methode und liefert neue Einsichten. Die einzelnen Artikel dieses Buches sind jedoch für sich selbständig.

Die Publikation der Arbeiten erfolgte seinerzeit nur in wissenschaftlichen Zeitschriften auf dem begrenzten Gebiet der DDR und auf Deutsch, so dass von ihnen kaum Notiz genommen wurde. Mit den neuen Möglichkeiten der weltweiten Interkommunikation über das Internet konnten die hier vorgestellten Arbeiten aus einem "Dornröschenschlaf" geweckt werden. Mit Suchprogrammen wie GOOGLE war man zwar schon seit einigen Jahren in der Lage, über Schlüsselwörter die Zitate dieser Arbeiten aufzufinden, welche aber nicht den Volltext lieferten. So kam es dann zu dem Beschluss, die Texte von den gedruckten Originalen möglichst wortgetreu neu aufzunehmen und sie in eine Webseite zu stellen. Diese Arbeit wurde von dem Mitautor E. GERTH mit Hilfe des Textverarbeitungsprogramms LaTeX 2e seit dem Jahre 2007 durchgeführt. Die zweckentsprechend bearbeiteten Texte wurden in die Homepage www.ewald-gerth.de eingestellt. Für englischsprachige Leser sind die Abstracts generell am Ende eines jeden Artikels angefügt.

Der persönliche Dank des Unterzeichnenden gilt seinem verehrten Lehrer Herrn Prof. Dr. MELCHER, welcher ihn (EG) schon während des Studiums der Physik (1955-1959) und später als Mitarbeiter in der Abteilung Isotopentechnik an der Pädagogischen Hochschule Potsdam (1960-1967) und danach in getrennten Institutionen (Pädagogische Hochschule Erfurt-Mühlhausen und Astrophysikalisches Observatorium Potsdam) in die wissenschaftliche Arbeit eingeführt und in allen Problemen beraten und geholfen hat, für eine über viele Jahrzehnte währende erfolgreiche Zusammenarbeit – verbunden mit herzlichen Glückwünschen zu seinem 82. Geburtstag am 22. März 2009.

Ewald Gerth

Potsdam, im März 2009

Preface

Seven publications on reaction kinetics – which came into being in the years from 1973 to 1982 in close cooperation of the authors Prof. Dr. HORST MELCHER and Dr. EWALD GERTH – are comprised in the present book in their thematical and methodical relation. The common theme of these publications is the description of the reaction course as a causal sequence of stochastic processes after MARKOV, which can be represented analytically by matrices. The analog transformation to other fields of application with process-like character reveals a surprising multivalence of the method and renders new insights. The single articles of this booklet are, however, self-contained for their own.

The publication of these treatises occurred that time only in scientific journals within the toughly restricted zone of the GDR, and in German, so that barely anybody took notice of it. By means of the new possibilities of worldwide intercommunication using the internet, the here presented papers could be revived from a deep hibernation-like sleep. Since several years, with a searching programme like GOOGLE one could recover the quotations of those papers by means of keywords, which, however, did not render the full text. Therefore, it was decided to scan the printed originals and to restore the text as far as possible word-for-word, in order to install them reliably into a website. This task was performed since 2007 by the co-author GERTH by means of the word processing program LaTeX 2e. The appropriately arranged texts were installed into the homepage www.ewald-gerth.de. For english-speaking readers there are attached generally the abstracts at the end of every article.

The personal gratitude of the undersigned is given to his revered scientific teacher Prof. Dr. MELCHER, who already during his (EG) studies of physics (1955-1959) and as a collaborator in the department of isotope techniques at the Pedagogic College Potsdam (1960-1967) and, later on, in separated institutions (Pedagogic College Erfurt-Mühlhausen, Astrophysical Observatory Potsdam) introduced him (EG) in science and advised as well as helped to resolve almost all possible problems.

The undersigned is indebted to Prof. MELCHER for a successful over many decades long-during cooperation – accompanied

with cordial congratulations to his (HM) 82nd birthday on March 22nd, 2009.

Ewald Gerth

Potsdam, March 2009

WISSENSCHAFTLICHE ZEITSCHRIFT DER PÄDAGOGISCHEN HOCHSCHULE "DR. THEODOR NEUBAUER" ERFURT - MÜHLHAUSEN

Mathematisch-Naturwissenschaftliche Reihe, 9. Jahrgang 1973, Heft 2, Nr. 219, S. 21–30 Als Manuskript gedruckt AUS DER SEKTION MATHEMATIK/PHYSIK DER PÄDAGOGISCHEN HOCHSCHULE ,,DR. THEODOR NEUBAUER" ERFURT - MÜHLHAUSEN Sektionsdirektor: Prof. Dr. rer. nat. habil. Werner Mögling

Analytische Behandlung und numerische Berechnung der Umwandlungsreihen von Radionukliden mit Hilfe von Matrixfunktionen¹

Von Horst Melcher und Ewald Gerth

Eingegangen am 12. 4. 1973

1 Einleitung

Die den Verfassern erst kürzlich bekannt gewordenen Arbeiten von A. BACH [1] und A. ENDLER [2] geben Veranlassung, die in früheren Arbeiten [3], [4], [5] und [6] allgemein angegebene Lösung für Reaktionen 1. Ordnung beliebiger Art auf den Spezialfall einer analytischen Behandlung der Umwandlungsreihen von Radionukliden anzuwenden, die beispielsweise in den sogenannten "natürlichen Zerfallsfamilien" oder bei den Spaltprodukten im Reaktor auftreten.

Für die Behandlung der Reaktionsprobleme - einschließlich der Rück- und Nebenreaktionen sowie von Seitenzweigen - in den verschiedensten Wissenschaftsgebieten (Chemie, Physikalische Chemie, Biologie, Kinetik, Kernphysik, Photophysik. Statistik u.a.m.) erweist sich die Anwendung des Matrizenformalismus als besonders geeignet. Die auf der Grundlage des Matrizenformalismus entwickelten Rechenprogramme sind vielseitig einsetzbar. In der vorliegenden Arbeit werden einige Berechnungsbeispiele für Umwandlungsreihen bei spontanen Kernumwandlungen angegeben.

Von A. BACH [1] wurden Matrizen nicht im Lösungsverfahren, sondern lediglich als Ordnungsschema angewendet, mit dem die auf konventionelle Weise gewonnenen Lösungen des Reaktionssystems systematisiert wurden. Das von A. ENDLER [2] angegebene Rechenprogramm für die Xenonvergiftung eines Reaktors verwendet ausschließlich Näherungslösungen ohne Benutzung einer Matrixdarstellung. Analog zu den im folgenden dargestellten Beispielen kann aber eine exakte Lösung mit Hilfe der Matrizen-Rechenprogramme gegeben werden.

In der vorliegenden Arbeit wird das allgemeine Umwandlungsproblem durch eine Differentialgleichung in Matrizenform beschrieben. Die Lösung ergibt sich als Matrix-Exponential-funktion (NEUMANNSCHE Reihe), die aus der iterativen Lösung der äquivalenten Integralgleichung folgt. Hierbei spielen im Unterschied zur LAPLACE-Transformation Eigenwertprobleme keine Rolle, was sich u.a. für numerische Berechnungen als vorteilhaft erweist.

¹Abstract: www.ewald-gerth.de/44abs.pdf – attached at the end of this article (page 22).

2 Gesetz einer unverzweigten Umwandlungsreihe in Matrixdarstellung

Die einzelnen Glieder der Konzentration c_i einer Umwandlungsreihe sind in Form einer Kette angeordnet, bei der jeweils ein Glied mit den beiden benachbarten zusammenhängt (Bild 1).

In der geordneten Aufeinanderfolge der einzelnen Nuklidarten gibt es nur Übergänge zwischen benachbarten Zuständen. Da es sich um Folgereaktionen handelt, sind die Übergänge einseitig gerichtet. Eine derartige Folge von Zuständen eines Systems, bei der die Übergänge zwischen den Zuständen zwar der Reihe nach streng geordnet sind, im Einzelfall aber zufällig (stochastisch) erfolgen, erfüllt die Bedingungen einer MARKOWschen Kette.

Bild 1: Folgereaktionen als MARKOW-Kette

Die Theorie der MARKOWschen Ketten liefert die Wahrscheinlichkeiten für die zufälligen Einzelprozesse. Für die Gesamtheit aller unabhängig voneinander nach der gleichen Kette verlaufenden Prozesse kann man aus den Wahrscheinlichkeiten Mittelwerte, d.h. "Erwartungswerte", herleiten. Die Nuklidkonzentrationen sind derartige Erwartungswerte, mit denen im folgenden gerechnet werden soll.

Aus dem Reaktionsschema Bild 1 entnimmt man folgendes System linearer Differentialgleichungen:

$$\frac{dc_1}{dt} = -\lambda_1 c_1$$

$$\frac{dc_2}{dt} = \lambda_1 c_1 - \lambda_2 c_2$$

$$\frac{dc_3}{dt} = \lambda_2 c_2 - \lambda_3 c_3$$

$$\frac{dc_n}{dt} = \lambda_{n-1} c_{n-1} - \lambda_n c_n$$
(1)

Das System läßt sich zu einer Matrizengleichung zusammenfassen:

$$\frac{\mathrm{d}\mathbf{c}}{\mathrm{d}t} = \mathbf{L}\mathbf{c} \tag{2}$$

Hierin ist ${\bf c}$ der Vektor der Nuklidkonzentrationen

$$\mathbf{c} = \left(egin{array}{c} c_1 \ c_2 \ c_3 \ dots \ c_n \end{array}
ight),$$

und ${\sf L}$ ist die konstante quadratische Matrix der Übergangskoeffizienten

$$\mathbf{L} = \begin{pmatrix} -\lambda_1 & 0 & 0 & 0 & \dots & 0 \\ \lambda_1 & -\lambda_2 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & -\lambda_3 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & -\lambda_4 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -\lambda_n \end{pmatrix}.$$

L stellt eine untere Dreiecksmatrix dar.

Die charakteristische Determinante mit der Einheitsmatrix $\mathbf{1}$

$$|\mathbf{1}s - \mathbf{L}| = 0 \tag{5}$$

(3)

(4)

liefert als Lösung die Eigenwerte $s_1 = -\lambda_1, s_2 = -\lambda_2, \dots, s_n = -\lambda_n$, die mit den Elementen der Hauptdiagonale der Matrix übereinstimmen. Die Lösung nach dem allgemein bekannten Verfahren über Eigenwerte und Eigenvektoren ist aber nur anwendbar, wenn alle Eigenwerte reell und verschieden sind. Als Lösung von (2) erhält man – siehe GANTMACHER [8] –

$$\mathbf{c}(t) = e^{\mathbf{L}t}\mathbf{c}(0). \tag{6}$$

Das ist das allgemeine Umwandlungsgesetz für Radionuklide, worin das einfache Umwandlungsgesetz für eine einzige instabile Kernart als Spezialfall enthalten ist,

$$c(t) = e^{-\lambda t} c(0). \tag{7}$$

Dieses Gesetz (7) gilt z.B., wenn das Folgeprodukt nicht weiter zerfällt, d.h. stabil ist, oder wenn c die Konzentration der Muttersubstanz ist, die keinerlei Zuflüsse hat und die in der Reihe der Umwandlungsfolge allein betrachtet wird.

3 Lösungsverfahren mit Hilfe der Laplace-Transformation

Ein Auffinden der Lösung von (2) ist mit Hilfe der LAPLACE-Transformation möglich, die generell zur Lösung eines linearen Differentialgleichungssystems geeignet ist. In der Ausgangsgleichung

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{c} = \mathbf{L} \ \mathbf{c}(t) \tag{8}$$

wird **L** zunächst als konstant vorausgesetzt. Diese Voraussetzung trifft für die Umwandlungsreihen, in denen ja die "Umwandlungskonstanten" (Übergangskoefflzienten) konstant sind, zu. Die zeitliche Abhängigkeit L(t) hingegen spielt eine Rolle bei der Erzeugung "künstlicher" Radionuklide im Neutronenstrom eines Reaktors (siehe unter 5.).

Die LAPLACE-Transformation ermöglicht eine einfache Rechnung im Bildraum. Aus der Differentiation einer Funktion im Originalraum wird bekanntlich eine Multiplikation mit der unabhängigen komplexen Variablen s im Bildraum. Man erhält dann

$$s \mathbf{c}(s) - \mathbf{c}(0) = \mathbf{L} \mathbf{c}(s). \tag{9}$$

Hierin ist $\mathbf{c}(0)$ die Integrationskonstante, die sofort die Anfangsbedingung liefert und nicht erst aus einem Bestimmungs-Gleichungssystem ermittelt zu werden braucht. Die Anfangsbedingungen sind die Konzentrationen der einzelnen Nuklide in den verschiedenen Zuständen (Stufen), die durch den Vektor $\mathbf{c}(0)$ gegeben sind.

Die Integraltransformation gestattet es, die konstante Matrix vorzuziehen. Aus der Funktion im Originalraum wird durch die Transformation eine entsprechende Funktion im Bildraum. Durch Umstellen und Ausklammern gelangt man von (9) zur linearen Vektortransformation im Bildraum

$$(\mathbf{1}s - \mathbf{L})\mathbf{c}(s) = \mathbf{c}(0). \tag{10}$$

Der Vektor, der sich im Bildraum ergibt, wird mit Hilfe der charakteristischen Matrix in den Anfangsvektor transformiert. Die Gleichung wird invertiert:

$$\mathbf{c}(s) = (\mathbf{1}s - \mathbf{L})^{-1} \,\mathbf{c}(0). \tag{10a}$$

Nun ergibt sich aus dem Anfangsvektor der Endvektor im Bildraum. Die inverse charakteristische Matrix, die von s abhängt, ist die Reaktionsmatrix $\mathbf{R}(s)$ im Bildraum der Transformation. Um die Gleichung im Originalraum zu erhalten, muß man zurücktransformieren:

$$\mathbf{c}(t) = \mathbf{R}(t)\,\mathbf{c}(0) \tag{11}$$

Damit ist die Grundgleichung (11) – eine lineare Vektortransformation – gewonnen, um eine Umwandlungskette zu beschreiben. Hierin ist $\mathbf{R}(t)$ die zeitabhängige Reaktionsmatrix, durch die der Vektor der Anfangszustände $\mathbf{c}(0)$ (Ausgangsverteilung) in den Vektor der Endzustände $\mathbf{c}(t)$ der einzelnen Glieder (Stufen) nach Ablauf der Reaktionszeit t transformiert wird.

Um die analytische Struktur der Reaktionsmatrix zu untersuchen, hat man die inverse charakteristische Matrix $(\mathbf{1}s-\mathbf{L})^{-1}$ aus dem Bildraum in den Originalraum der LAPLACE-Transformation zurückzutransformieren. Das kann für jedes Matrixelement einzeln durchgeführt werden. Daß sämtliche Elemente einzeln berechenbar sind, kann durchaus als Vorteil der LAPLACE-Transformation betrachtet werden.

Die LAPLACE-Transformation macht die Lösung von Eigenwertproblemen erforderlich, was mitunter einige Mühe bereitet. Diese gewisse Schwerfälligkeit der LA-PLACE-Transforma-tion umgeht man, indem das vorliegende Umwandlungsproblem mit Hilfe einer Matrix-Exponentialfunktion (NEUMANNsche Reihe) behandelt wird

(siehe [3, 5, 6]), wobei eine Unterscheidung der Fälle (12) und (13) nicht vorgenommen zu werden braucht.

Bei der Berechnung der inversen charakteristischen Matrix treten in den Bildfunktionen Polstellen auf, die den Eigenwerten entsprechen. Darüber hinaus ergeben sich aber noch Differenzen der einzelnen Koeffizienten. Hierbei muß man voraussetzen, daß alle Koeffizienten verschieden sind. Wenn nämlich ihre Differenz Null ergibt, wird die charakteristische Matrix singulär und ist mithin nicht invertierbar.

Die Elemente der Reaktionsmatrix für untereinander verschiedene Werte λ_i sind durch folgende analytische Ausdrücke gegeben:

$$R_{ik}(t) = \begin{pmatrix} \left(\prod_{h=i}^{k} \lambda_{h}\right) \sum_{j=i}^{k} \frac{e^{-\lambda_{j}t}}{\prod_{\substack{l=i\\j\neq l}}^{k} (\lambda_{l} - \lambda_{j})} & \text{für } i > k \\ e^{-\lambda_{i}t} & \text{für } i = k \\ 0 & \text{für } i < k. \end{cases}$$
(12)

Im Falle gleicher Koeffizienten $\lambda_1 = \lambda_2 = \lambda_3 = \cdots = \lambda$ ergibt sich

$$R_{ik}(t) = \begin{vmatrix} \frac{1}{(i-k)!} (\lambda t)^{i-k} e^{-\lambda t} & \text{für } i = k \\ 0 & \text{für } i < k. \end{cases}$$
(13)

Diese Funktionen (13) wurden auf Grund von Wahrscheinlichkeitsüberlegungen für die Transmission von Strahlungen durch Materieschichten verwendet [4]. Neben diesem Spezialfall gleicher Übergangskoeffizienten wurden dort [4, S. 152] bereits auch einige Betrachtungen für den allgemeineren Fall unterschiedlicher Werte der Übergangskoeffizienten angestellt. Bei der Analyse und Deutung der Dosis-Effekt-Kurven [7] wurde bisher ausschließlich der Spezialfall gleicher Übergangskoeffizienten betrachtet, so daß es angezeigt erscheint, diese Umwandlungs- bzw. Überlebenskurven auch unter der Voraussetzung unterschiedlicher Umwandlungskoeffizienten darzustellen. Damit würden dann die bisherigen häufig gekünstelten Ansätze entfallen.

Das nachstehend dargestellte Verfahren wurde in [3] entwickelt. Wegen seiner Allgemeinheit ist es für die Beschreibung von beliebigen Reaktionen 1. Ordnung geeignet. Bei entsprechender Spezialisierung ist es demzufolge auch für die Darstellung und für die numerische Berechnung von Umwandlungsreihen radioaktiver Nuklide vorteilhaft anwendbar.

4 Lösung durch Reihenentwicklung der Matrix-Exponentialfunktion

Ein wesentlich übersichtlicheres Lösungsverfahren als die LAPLACE-Transformation, das man auch für die numerische Behandlung aller möglichen Spezialfälle gleichermassen gut anwenden kann, ist durch die Reihenentwicklung der Matrix-Exponentialfunktion gegeben.

Die Integration von Gleichung (2) ergibt

$$\mathbf{c}(t) = \mathbf{c}(0) + \int_{0}^{\bullet} \mathbf{L}\mathbf{c}(\tau) \, \mathrm{d}\tau.$$
(14)

Hierin ist $\mathbf{c}(0)$ der Vektor der Anfangskonzentration zum Zeitpunkt t = 0. Die Gleichung (14) ist eine VOLTERRASChe Integralgleichung mit konstanter und somit zweifach ausgearteter Kernmatrix. Durch Iteration mit dem ersten Näherungsansatz $\mathbf{c}(t) = \mathbf{c}(0)$ erhält man

$$\mathbf{c}(t) = \mathbf{c}(0) + \mathbf{L} t \, \mathbf{c}(0) = (\mathbf{1} + \mathbf{L} t) \, \mathbf{c}(0).$$
(15)

Durch wiederholtes Einsetzen ergibt sich schließlich eine NEUMANNsche Reihe

$$\mathbf{c}(t) = \left(\mathbf{1} + \mathbf{L}t + \frac{1}{2!}\mathbf{L}^{2}t^{2} + \frac{1}{3!}\mathbf{L}^{3}t^{3} + \cdots\right)\mathbf{c}(0).$$
(16)

Hierin ist der rechtsseitige Klammerausdruck von (16)

$$e^{\mathbf{L}t} = \sum_{k=0}^{\infty} \frac{(\mathbf{L}t)^k}{k!}$$
(17)

die Reaktionsmatrix als Resolvente der Integralgleichung (14) in Form einer Matrix-Exponentialfunktion.

Somit kann das Umwandlungsgesetz der Radionuklide gemäß Gl. (6) durch

$$\mathbf{c}(t) = \mathrm{e}^{\mathbf{L}t} \mathbf{c}(0) \tag{18}$$

dargestellt werden. Es gilt also ganz allgemein eine Exponentialform für die Umwandlungsreihen – und nicht nur für einen einzelnen Übergang –, wenn man die Verallgemeinerung der Matrix-Exponentialfunktion einführt.

Durch Gleichung (18) ist eine bessere Übersicht über alle Umwandlungsprozesse gegeben. Die Koeffizientenmatrix L enthält alle wechselseitigen Beziehungen zwischen den Komponenten der Umwandlungsreihe.

Man kann auch ohne weiteres von der eingangs erwähnten Kettenstruktur (Bild 1) der Umwandlungsreihen abgehen und Verzweigungen, zusätzliche Quellen und dergleichen zulassen. Auch von außen induzierte Umwandlungen – beispielsweise infolge Neutronenbestrahlung – lassen sich mit dieser Darstellung erfassen.

Zusammenfassend kann festgestellt werden, daß man mit Hilfe der Resolventenmatrix in der Lage ist, die Lösung in anderer Weise zu finden, als es bisher üblich war. Hierbei spielen nämlich Eigenwertprobleme – vgl. LAPLACE-Transformation – überhaupt keine Rolle. Man braucht nur die entsprechende Reihe anzusetzen und kann eine beliebige Koeffizientenmatrix verwenden. Um die Lösung numerisch zu erhalten, hat man lediglich die Reihe für einen Rechenautomaten zu programmieren. Die Näherungsverfahren, die man für die Bestimmung der Nullstellen von Polynomen anwendet, sind hier nicht mehr erforderlich: Jedes Eigenwertproblem ist gegenstandslos, also auch dasjenige für gleiche Übergangskoeffizienten.

5 Induzierte Aktivität in Kernumwandlungsreihen

Bei induzierten Kernumwandlungen, z.B. durch Neutronenbestrahlung, deren Fluß zeitlichen Schwankungen unterliegt, sind auch die Übergangskoeffizienten zeitabhängig.

Diese Koeffizienten ν_i ergeben sich aus dem Wirkungsquerschnitt σ_i des *i*-ten Nuklids der n betrachteten Komponenten des Reaktionssystems und der Strahlungsflußdichte Φ zu

$$\nu_i = \sigma_i \Phi(t). \tag{19}$$

Da für jedes Nuklid ein Wirkungsquerschnitt für den Neutroneneinfang existiert, der energieabhängig ist, läßt sich die Gesamtheit aller Wirkungsquerschnitte zu einer Matrix ${\bf S}$ zusammenfassen:

$$\mathbf{S}\Phi(t) \tag{20}$$

Zerfalls- und Aktivierungsreaktionen können somit in einem gemeinsamen System dargestellt werden. Die Koeffizientenmatrix $\mathbf{K}(\mathbf{t})$ ergibt sich als Summe der Zerfalls-Koeffizientenmatrix \mathbf{L} und der Aktivierungs-Koeffizientenmatrix $\mathbf{S}\Phi(t)$ zu

$$\mathbf{K}(t) = \mathbf{S}\Phi(t) + \mathbf{L}.$$
(21)

Die Reaktionsmatrix läßt sich ebenfalls durch eine NEUMANNsche Reihe mit einfach ausgearteter Kernmatrix darstellen:

$$\mathbf{R}(t) = \mathbf{1} + \int_{0}^{t} \mathbf{K}(\tau) \, \mathrm{d}\tau + \int_{0}^{t} \mathbf{K}(\tau) \int_{0}^{\tau} \mathbf{K}(\tau') \, \mathrm{d}\tau' \, \mathrm{d}\tau + \cdots$$
(22)

Wenn im speziellen Fall der Neutronenfluß während der Dauer der Bestrahlung konstant ist, gilt $\mathbf{R}(t_1) = e^{\mathbf{K}t} = e^{(\mathbf{S}\Phi + \mathbf{L})t}.$ (23)

Die Lösung ergibt sich jeweils durch eine Transformation des Vektors der Nuklidkonzentrationen. Es sind auch mehrere sukzessive Transformationen möglich. Wenn in zwei aneinander anschließenden Reaktionszeiten t_1 und t_2 unterschiedliche Reaktionsmatrizen \mathbf{R}_1 und \mathbf{R}_2 gelten, wird der Anfangsvektor zunächst in

 $\mathbf{c}(t_1) = \mathbf{R}_1(t_1) \, \mathbf{c}(0)$

und danach in

$$\mathbf{c}(t_1 + t_2) = \mathbf{R}_2(t_2) \,\mathbf{c}(t_1) = \mathbf{R}_2(t_2) \,\mathbf{R}_1(t_1) \,\mathbf{c}(0)$$
(25)

mit der resultierenden Reaktionsmatrix

$$\mathbf{R}_{1,2}(t_1 + t_2) = \mathbf{R}_2(t_2) \,\mathbf{R}_1(t_1) \tag{26}$$

(24)

als Produkt beider Reaktionsmatrizen transformiert.

Die Vertauschung der Reihenfolge beider Reaktionen führt im allgemeinen zu unterschiedlichen Reaktionsergebnissen, da die Vertauschungsrelation der Matrizenmultiplikation nicht erfüllt ist,

$$\mathbf{R}_2 \mathbf{R}_1 - \mathbf{R}_1 \mathbf{R}_2 \neq \mathbf{O},\tag{27}$$

wobe
i ${\boldsymbol{\mathsf{O}}}$ die Nullmatrix ist.

Damit gilt auch

$$e^{\mathsf{L}t_2}e^{\mathsf{K}t_1} \neq e^{\mathsf{K}t_1}e^{\mathsf{L}t_2}.$$
(28)

Bei einer zeitlich veränderlichen Bestrahlung kann man die Reaktion in einzelne Abschnitte zerlegen:

$$\mathbf{R}_{1,2,\cdots m}\left(\sum_{i} t_{i}\right) = \mathbf{R}(t_{m})\cdots \mathbf{R}(t_{2})\mathbf{R}(t_{1}).$$
⁽²⁹⁾

Handelt es sich bei den t_i um infinitesimale Zeitintervalle $\Delta \tau_i$, so gilt näherungsweise

$$\mathbf{R}(\Delta \tau_i) \approx e^{\mathbf{K}(\tau_i) \Delta \tau_i} \approx \mathbf{1} + \mathbf{K}(\tau_i) \Delta \tau_i, \tag{30}$$

wenn man die Reihe der Matrix-Exponentialfunktion nach dem linearen Glied abbricht. Die gesamte Reaktionsmatrix ergibt sich im Grenzfall einer ausgezeichneten Zerlegungsfolge mit $t_{max} \rightarrow 0$ und $m \rightarrow \infty$ zu

$$\mathbf{R}(t) = \int_{0}^{t} e^{\mathbf{K}(\tau) \mathrm{d}\tau} = \int_{0}^{\infty} \left(\mathbf{1} + \mathbf{K}(\tau) \mathrm{d}\tau \right)$$
(31)

als VOLTERRAsches Produktintegral.

Die Resolventenmatrix als NEUMANNsche Reihe und das VOLTERRASche Produktintegral sind also äquivalent. Für $\mathbf{K}(\tau) = \mathbf{Const}$ liefert das Produktintegral wieder die Matrix-Exponentialfunktion:

$$\mathbf{R}(t) = e^{\mathbf{K}(t)}.\tag{32}$$

6 Aktivität und Zählrate bei Umwandlungsreihen

Die Aktivität A ist durch die in der Zeiteinheit erfolgenden Umwandlungen von N Atomkernen gegeben,

$$A = N\lambda ; (32a)$$

hierin ist λ die Umwandlungskonstante, die mit der Halbwertzeit T eines gegebenen Radionuklids durch

$$\lambda = \frac{\ln 2}{T} \tag{33}$$

zusammenhängt.

Die Gesamt- oder Teilaktivitäten müssen innerhalb der Umwandlungsreihen durchaus nicht immer mit Notwendigkeit in allen Zeitabschnitten geringer werden, siehe Bild 4 und Bild 5.

Die Beziehung für die Aktivität ("Zerfallsgesetz")

$$A = \lambda N = \lambda N_0 e^{-\lambda t} = A_0 e^{-\lambda t} \tag{34}$$

gilt nur für den speziellen Fall, wenn nämlich ein Radionuklid in ein stabiles Nuklid zerfällt, bzw. wenn die Zerfälle aller Folgeprodukte nicht mitgezählt werden.

Es ist also allgemeiner, von Umwandlungen anstatt von Zerfällen zu sprechen. Das Anwachsen von Gesamt- oder Teilaktivität in den Ketten aufeinander folgender spontaner Kernprozesse wird durch den Begriff "Umwandlung" besser erfaßt als durch "Zerfall". Die Zahl der je Zeiteinheit erfolgenden Umwandlungen ist nicht in allen Fällen gleich der Zahl der in dieser Zeiteinheit emittierten Korpuskeln plus Quanten. (Hierbei steht Korpuskel für Teilchen mit endlicher Ruhmasse und Quant für Teilchen mit der Ruhmasse Null.) Bei der über die gemessene Zählrat z zu ermittelnden Aktivität hat man den Wirkungsgrad $W \leq 1$ der Meßanordnung zu berücksichtigen, A = z/W.

Für die spezifische Aktivität a gilt entsprechend Gl. (32a)

$$a = \lambda c. \tag{35}$$

Die Gesamtaktivität aller n Komponenten des Systems ergibt sich als die Summe

$$A = \sum_{i=1}^{n} \lambda_i N_i; \tag{36}$$

entsprechend gilt für die gesamte spezifische Aktivität

$$a = \sum_{i=1}^{n} \lambda_i c_i. \tag{37}$$

Man erhält diese Summe auch, indem man. den Spaltenvektor der Nuklidkonzentrationen ${\bf c}$ mit dem Zeilenvektor der Zerfallskonstanten

$$\mathbf{l} = (\lambda_1 \ \lambda_2 \ \lambda_3 \ \cdots \ \lambda_n) \tag{38}$$

multipliziert, nämlich als Skalarprodukt

$$a = \mathbf{l} \ \mathbf{c}.\tag{39}$$

Zur Berechnung der Aktivitäten der einzelnen Komponenten transformiert man ${\bf c}$ mit der Diagonalmatrix der Umwandlungskonstanten

$$\mathbf{D}_{\lambda} = \begin{pmatrix} \lambda_{1} & 0 & 0 & \dots & 0 \\ 0 & \lambda_{2} & 0 & \dots & 0 \\ 0 & 0 & \lambda_{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_{n} \end{pmatrix}.$$
 (40)

und erhält den Spaltenvektor der spezifischen Aktivitäten

$$\mathbf{a} = \mathbf{D}_{\lambda} \mathbf{c}.\tag{41}$$

Die Gleichungen (39) und (41) gelten nur für geradlinige Ketten ohne Verzweigungen. Im Falle von Verzweigungen ist für Gl. (38) der "Eigenwert-Zeilenvektor"

$$\mathbf{l}_s = -(s_1 \ s_2 \ s_3 \ \cdots \ s_n)$$

und für Gl. (40) die "Eigenwert-Diagonalmatrix" einzusetzen:

$$\mathbf{D}_{s} = \begin{pmatrix} -s_{1} & 0 & 0 & \dots & 0\\ 0 & -s_{2} & 0 & \dots & 0\\ 0 & 0 & -s_{3} & \dots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \dots & -s_{n} \end{pmatrix}.$$
(42)

$$\mathbf{a} = \mathbf{D}_s \mathbf{c} \tag{43}$$

gestattet zudem die linksseitige Multiplikation mit einem weiteren Zeilenvektor \mathbf{w} , in dem die Nachweiswahrscheinlichkeit des Detektors, die Energieausbeute oder die Multiplizität enthalten sein können.

So ist beispielsweise die Zählrate z darstellbar durch

$$z = \mathbf{w} \mathbf{a} \tag{44}$$

$$z(t) = \mathbf{w} \ \mathbf{D}_s e^{\mathbf{L}t} \mathbf{c}(0). \tag{45}$$

Die Zählrate ist also eine skalare Zeitfunktion. Wegen des Informationsverlustes bei der Skalarmultiplikation kann man von der Zählrate aus nicht ohne weiteres auf die Komponenten-Zusammensetzung schließen. Zur Identifizierung der Komponenten bedarf es anderer physikalischer oder chemischer Methoden.

7 Numerische Lösung für zwei Beispiele

Die numerische Lösung der Darstellung der Nuklidkonzentrationen und beliebiger Skalarprodukte (Aktivität, Zählrate usw.) als Zeitfunktionen wurde mit Hilfe eines Programmes für den polnischen Digitalrechenautomaten Odra 1204 durchgeführt, das aber hier nicht abgedruckt werden soll.

In den Rechner werden zunächst die Koeffizientenmatrix und die Schrittweite eingegeben. Hieraus berechnet er die Resolventenmatrix für das Zeitintervall Δt . Der einzugebende Anfangsvektor wird dann der Schrittzahl entsprechend oft mit der Reaktionsmatrix transformiert und jeweils ausgedruckt. Der Spaltenvektor wird mit beliebig vielen Zeilenvektoren skalar multipliziert, und die Skalarprodukte werden ebenfalls ausgedruckt.

Für die Berechnung eines gegebenen Systems besteht die Aufgabe darin, an Hand des Reaktionsschemas das Differentialgleichungssystem aufzustellen und daraus die Koeffizientenmatrix zu entnehmen. Sind die Koeffizienten numerisch bekannt, so kann man die Matrix als Datenstreifen dem Rechner eingeben. Entsprechendes gilt auch für die Vektoren. Das Speichervermögen des Rechenautomaten reicht zur Berechnung von Matrizen bis zur 31. Ordnung aus. Eine zu berechnende Umwandlungsreihe kann also maximal 31 Komponenten² enthalten.

²Anmerkung bei der Textbearbeitung des vorliegenden Artikels im Jahre 2008:

Die Angabe der Leistungsfähigkeit des Rechners ODRA 1204 bezieht sich auf den damaligen Stand der Rechentechnik - also etwa von 1970. In der nachfolgenden Zeit nahm die Computertechnk einen enormen Aufschwung, welcher u. a. die Organisation der Datenverarbeitung, die Speicherkapazität, die Rechengeschwindigkeit und die graphische Darstellung betrifft. Somit entfällt die hier angegebene Begrenzung der Matrix auf den Rang 31. Es ist daher ohne weiteres möglich, das gesamte Nukleidschema aller radioaktiven Übergänge in einer "globalen Reaktionsmatrix" vom Rang 260 (maximale Anzahl der Nukleonen eines Atomkerns bis zu den Transuranen mit allen Isotopen) unterzubringen und die Reaktionsmatrix für beliebige Übergänge mit den entsprechenden Untermatrizen simultan zu berechnen.

7.1 Uranreihe

Das Schema der Uranreihe für $^{238}\mathrm{U}$ ist im Bild 2 dargestellt.

Bild 2: Schema der Umwandlungsreihe des 238 U

In das Differentialgleichungssystem dieser Reihe (Bild 3) werden die aus Bild 2 zu entnehmenden Werte eingesetzt, wodurch sich die **L**-Matrix für den Datenstreifen ergibt. Hierbei wurden die Halbwertzeiten als fehlerfrei betrachtet, so daß die Stellenzahl für die Umwandlungskonstanten mit sechs Dezimalstellen gewählt wurde, nicht zuletzt deshalb, um auch einen möglichen Rundungsfehler des Rechenautomaten zu kontrollieren, da die Umwandlungskonstanten über 21 Zehnerpotenzen variieren (siehe Bild 3).

Unter der Voraussetzung, daß sich bis zum 222 Rn ein radioaktives Dauergleichgewicht eingestellt hat und keine Nuklide der Folgeprodukte vorhanden sind, wurde als spezielles Beispiel für diese Reihe der Aktivitätsverlauf von 222 Rn mit seinen Folgeprodukten ausgedruckt.

Verteilungswahrscheinlichkeiten:

$w_{3,4} = 0,0015$	$w_{3,4}\lambda_3 = 0.14685225 \cdot 10^{-4}$
$w_{3,5} = 0,9985$	$w_{3,5}\lambda_3 = 0,9775464775 \cdot 10^{-2}$
$w_{9,10} = 0,9996$	$w_{9,10}\lambda_9 = 0,3786144936 \cdot 10^{-2}$
$w_{9,11} = 0,0004$	$w_{9,11}\lambda_9 = 0.1515064 \cdot 10^{-5}$
$w_{12,13} = 0,9996$	$w_{12,13}\lambda_{12} = 0{,}5832196188{\cdot}10^{-3}$
$w_{12,14} = 0,0004$	$w_{12,14}\lambda_{12} = 0,2333812 \cdot 10^{-6}$
$w_{16,17} = 0,9999995$	$w_{16,17}\lambda_{16} = 0,16044991978 \cdot 10^{-5}$
$w_{16,18} = 0,0000005$	$w_{16,18}\lambda_{16} = 0,80225 \cdot 10^{-12}$

Bild 3: Differentialgleichungssystem der ²³⁸U-Reihe

Bild 4: Maxima beim Aktivitätsverlauf von Radon mit seinen Folgeprodukten (η bedeutet Schrittzahl im Rechengang.)

Die zu Beginn der Messung vorliegende Radon-Aktivität klingt ab (T = 3,824 d); zugleich aber wächst die Aktivität der Folgeprodukte (RaA $\equiv {}^{218}_{84}$ Po, RaB $\equiv {}^{214}_{82}$ Pb usw.) an. Die resultierende Gesamtaktivität wächst auf Grund der kleineren Halbwertzeiten der Folgeprodukte rasch an, so daß sich schließlich ein Maximum ausbildet.

Verfolgt man gesondert die Kurven für die Alpha- und Beta-Aktivität, so findet man, daß sich zunächst das Maximum für die Beta-Aktivität bei t = 3 h 29 min 6 s, sodann das Maximum für die Gesamtkurve (Alpha- plus Beta-Aktivität bei t = 3 h 46 min 12 s und schließlich das Maximum für die Alpha-Aktivität bei t = 3 h 49 min 18 s ausbildet (Bild 4).

Nach dem Überschreiten des Maximums klingt die Gesamtaktivität zunächst über einen längeren Zeitraum (etwa) mit der Halbwertzeit des vergleichsweise längstlebigen Nuklids ab (Bild 5).

Das Maximum der Gesamtaktivität für die Rn-Umwandlung läßt sich z.B. in Praktikumsversuchen³ experimentell bestätigen, allerdings nicht mit der hier angegebenen Genauigkeit im Sekundenbereich. Die Summe aller Komponenten müßte in allen Umwandlungsstadien konstant bleiben. Das Rechenergebnis, daß diese Summe (Bild 5) dennoch mit der Zeit kleiner wird, ist auf den Rundungsfehler im Rechenautomaten zurückzuführen.

 $^{^3 {\}rm Horst}$ Melcher: Handbuch der experimentellen Schulphysik Band 10, Zweiter Teil: Kernphysik, S. 95–394. Aulis Verlag Deubner & Co ${\rm KG}$ · Köln · 1969

Bild 5: Aktivitätsverlauf von Radon mit seinen Folgeprodukten

7.2 Umwandlung von Gold in Quecksilber

Bild 6: Reaktionsschema und Differentialgleichungssystem für die Umwandlung von Gold in Quecksilber durch Neutronenbeschuß

Setzt man Gold, von dem nur ein einziges Isotop, nämlich ¹/₁⁹Au, stabil vorkommt, einem Neutronenfluß aus, so wird ¹/₇₉⁹Au erzeugt, das sich in das stabile ¹⁰/₈₀¹⁰Hg umwandelt. Während der Einwirkung des Neutronenstromes auf das Goldtarget, in dem zur Zeit t = 0 nur ¹⁹/₇₉Au-Kerne vorhanden sind, werden schließlich auch die folgenden Umwandlungsprodukte ¹⁹/₇₉Au, ¹⁹/₇₉Au, ²⁰⁰/₇₉Au usw. sowie die stabilen Hg-Isotope ¹⁹⁸/₈₀Hg, ¹⁹⁸/₈₀Hg, ²⁰⁰/₈₀Hg entstehen, die - je nach Dauer der Bestrahlung - ebenfalls der Neutroneneinwirkung unterliegen, so daß u.U. auch radioaktive Hg-Isotope entstehen können.

Die entstehenden Nuklidmengen hängen - außer von der Bestrahlungsdauer - von der Neutronenflußdichte Φ und von den Wirkungs- bzw. Einfangquerschnitten σ_i ab, die Funktionen der Neutronenenergie sind.

Das Reaktionsschema und das Differentialgleichungssystem der Aktivierung von Gold sowie die Umwandlung in Quecksilber sind im Bild 6 dargestellt.

Für die Aktivierungsphase gilt bei zeitlich konstanten Neutronenfluß \varPhi

$$\mathbf{c}(t_a) = e^{(\mathbf{S}\Phi + \mathbf{L})\mathbf{t}_a} \mathbf{c}(0).$$
(46)

Der Konzentrationsverlauf für die Abklingphase ist gegeben durch

$$\mathbf{c}(t) = e^{\mathbf{L}t}c(t_a)$$
$$= e^{\mathbf{L}t}e^{(\mathbf{S}\boldsymbol{\Phi} + \mathbf{L})\mathbf{t}_a}\mathbf{c}(0).$$
(47)

Die Matrix der Wirkungsquerschnitte hat die Gestalt

$$\mathbf{L} = \begin{pmatrix} -\sigma_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \sigma_1 & -\sigma_2 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2 & -\sigma_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_3 & -\sigma_4 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_4 & -\sigma_5 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_5 & -\sigma_6 & 0 \\ 0 & 0 & 0 & 0 & 0 & \sigma_6 & -\sigma_7 \end{pmatrix}.$$

Für die Matrix der Umwandlungskonstanten gilt

$$\mathbf{L} = \begin{pmatrix} -\lambda_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -\lambda_2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\lambda_3 & 0 & 0 & 0 & 0 \\ \lambda_1 & 0 & 0 & -\lambda_4 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda_4 & 0 & 0 & 0 \end{pmatrix}$$

(49)

(48)

Der dem polnischen Rechenautomaten Odra 1204 eingegebene Datenstreifen berücksichtigt folgende Werte:

$$\begin{split} & \varPhi = 10^{14} \mathrm{cm}^{-2} \mathrm{s}^{-1} \\ & \lambda_1 = 0; \lambda_2 = 0, 297129 \cdot 10^{-5} \mathrm{s}^{-1}; \lambda_3 = 0, 254682 \cdot 10^{-5} \mathrm{s}^{-1}; \lambda_4 = 0, 238685 \cdot 10^{-5} \mathrm{s}^{-1}; \\ & \lambda_5 = 0; \lambda_5 = 0; \\ & \sigma_1 \varPhi = 9, 88 \cdot 10^{-9} \mathrm{s}^{-1}; \sigma_2 \varPhi = 2, 58 \cdot 10^{-6} \mathrm{s}^{-1}; \sigma_3 \varPhi = 3 \cdot 10^{-9} \mathrm{s}^{-1}; \end{split}$$

 σ_4 ist bisher nicht bekannt; in der Rechnung wurde $\sigma_4 = 0$ gesetzt.

Die mit diesen Angaben berechneten Aktivitäts- bzw. Konzentrationsverläufe sind im Bild 7 dargestellt. Man entnimmt dieser Darstellung, daß die Gesamtaktivität sowie die Teilaktivitäten der Gold-Isotope 198, 199 und 200 abklingen, wenn die Aktivierungsphase beendet ist. Während der Abklingphase, die im vorliegenden Fall bei $t = 8,64 \cdot 10^5$ s beginnt, hält die Nachbildung der Quecksilber-Isotope durch Zerfall der Gold-Isotope noch weiter an und erreicht für $t_a \to \infty$ einen Sättigungswert.

Bild 7: Umwandlung von Gold in Quecksilber durch Neutronenbeschuß (Die eingekreisten Ziffern kennzeichnen die Konzentrationsverläufe der Komponenten. Die Differenz 21,4842988-21,4805926 ist ein Maß für die umgewandelten ¹⁹⁷Au-Kerne.)

Im Bild 8 ist der Verlauf der Gesamtaktivität dargestellt, wenn die Aktivierungsdauer $t_a = 2,88 \cdot 10^5 \text{s} = 3 \text{ d} 8 \text{ h}$ beträgt. Man erkennt deutlich, daß sich der Kurvenverlauf aus drei (quasi)geraden Teilstücken zusammensetzt. Die Analyse einer solchen Umwandlungskurve würde entsprechend drei verschiedene Halbwertzeiten für die drei Radionuklide liefern.

Bild 8: Kurve für die Gesamtaktivität, die sich in drei (quasi)-gerade Teilkurven für drei aktive Gold-Isotope zerlegen bzw. zusammensetzen läßt

Die Verfasser danken den Herren Detlef, Michaelis und Sujata von der Rechenstelle des Instituts für Schiffbau Rostock (Schiffbauversuchsabteilung Potsdam-Marquardt) für die Unterstützung bei der Aufstellung des Rechenprogramms und die Durchführung der Rechnungen.

Literatur

- Bach, A.: Die mathematische Beschreibung der Umwandlung von Nukliden. Atomkernenergie 11 (1966) 115 bis 119
- [2] Endler, A.: Berechnung des Verlaufes der Xenonvergiftung eines Reaktors mit Hilfe einer digitalen Rechenmaschine. Zentralinstitut f
 ür Kernforschung Rossendorf bei Dresden Bericht ZfK - 154 (1968)
- [3] Gerth, E.: Analytische Darstellung der Kinetik des Keimaufbaus beim photographischen Prozeß, Habilitationsschrift, TU Dresden 1972
- [4] Melcher, H.: Transmission und Absorption. Ein allgemeines Gesetz f
 ür ionisierende Strahlungen. VEB Deutscher Verlag der Wissenschaften, Berlin 1970
- [5] Melcher, H. und Gerth, E.: Behandlung von Strahlungstransportproblemen mit Matrixfunktionen. Wiss. Zeitschr. der Päd. Hochschule Erfurt/Mühlhausen 8 (1972) Heft 1 S. 3 bis 10
- [6] Melcher, H., und Gerth, E.: Lösung des stationären Strahlungstransportproblems für Energiestreuung mit Hilfe von Matrizenfunktionen. Kernenergie 16 (1973) 47 bis 52
- [7] Melcher, H.: New Aspects for the Interpretation of Dose-Effect- and Transmission-Curves. Wiss. Zeitschr. der Päd. Hochschule Erfurt/Mühlhausen 9 (1973) Heft 2 S. 31
- [8] Gantmacher, F. R.: Matrizenrechnung Teil l : Allgemeine Theorie, VEB Deutscher Verlag der Wissenschaften, Berlin 1958

Analytical treatment and numerical calculation of conversion series of radionuclides by means of matrix functions

Horst Melcher¹ and Ewald Gerth²

¹ Pedagogic College ,,Dr. Theodor Neubauer", Erfurt-Mühlhausen, GDR

² Central Institute for Astrophysics of the Academy of Sciences of the GDR, Potsdam

Abstract

The analytical treatment of a process of radioactive reactions accompanied with conversion of chemical elements (spontaneous decay or build-up of the nucleus by capture of neutrons) can be afforded advantageously by formulating the system of linear differential equations by matrices, which yields at once an exact solution in its full entirety.

The solution is given by a matrix transformation of the nuclide components arranged as a vector of the nuclides, which is transformed in a "reaction space" by a resolving matrix during a transition process from an initial composition to the end composition.

The resolving matrix is represented as an expansion of a matrix exponential function, yielding immediately the algorithm for the numerical calculation in a computer program.

The linearity of the system of differential equations offers also the solution by using the LAPLACE-transformation, which is discussed concerning advantages and disadvantages compared to the expansion of the matrix exponential function (NEUMANN's row).

The application of vector algebra gives some interesting insight into the interconnection of the reacting components of the system: Thus, successive processes with different transition coefficients are commonly not commutative because of the noncommutativity of matrix-multiplication. The measured total radioactivity of the element composition is the scalar product of the column vector of nuclides and the row vector of detection probability. Every selected transition system is represented as a submatrix of the "global reaction matrix" comprising all possible nuclear transitions from hydrogen to transuranium.

Some numerical examples are given for the calculation of the uranium row and the conversion of gold to mercury.

Publication

WISSENSCHAFTLICHE ZEITSCHRIFT DER PÄDAGOGISCHEN HOCHSCHULE "DR. THEODOR NEUBAUER" ERFURT-MÜHLHAUSEN Mathematisch-Naturwissenschaftliche Reihe, 9. Jahrgang 1973, Heft 2, Nr. 219, S. 21–30 Eingegangen am 12. 4. 1973 SCIENTIFIC JOURNAL OF THE PEDAGOGIC COLLEGE "DR. THEODOR NEUBAUER" ERFURT-MÜHLHAUSEN Mathematical-scientific row, 9. Year 1973, Volume 1, No. 219, p. 21–30 Received 1973, April 12th

Article available in German by the web-address: www.ewald-gerth.de/44.pdf

WISSENSCHAFTLICHE ZEITSCHRIFT DER PÄDAGOGISCHEN HOCHSCHULE "DR. THEODOR NEUBAUER" ERFURT - MÜHLHAUSEN

Mathematisch-Naturwissenschaftliche Reihe, 8. Jahrgang 1972, Heft l, Nr. 145, S. 3–10 Als Manuskript gedruckt

AUS DER SEKTION MATHEMATIK/PHYSIK DER PÄDAGOGISCHEN HOCHSCHULE "DR. THEODOR NEUBAUER" ERFURT - MÜHLHAUSEN Sektionsdirektor: Prof. Dr. rer. nat. habil. Werner Mögling

Behandlung von Strahlungstransportproblemen mit Matrixfunktionen¹

Von Horst Melcher und Ewald Gerth

Eingegangen am 25. 11. 1970

Herrn Nationalpreisträger Prof. Dr. habil. C. F. Weiss, Mitglied der Deutschen Akademie der Wissenschaften zu Berlin, in Hochachtung und Dankbarkeit zur Vollendung seines 70. Lebensjahres gewidmet.

Einleitung

Die Vielfalt der physikalischen Transporterscheinungen – z.B. der Strömung, der Diffusion und der Strahlung – wird allgemein durch eine von BOLTZMANN aufgestellte Integrodifferentialgleichung umfaßt, deren Lösung eine analytische Beschreibung des betreffenden Problems liefert.

Die mathematische Behandlung dieser Integrodifferentialgleichung erweist sich als sehr schwierig; eine allgemeine Lösung ist bisher noch nicht gefunden worden. Lediglich für eine Reihe von Spezialfällen lassen sich Lösungen in geschlossener Form angeben.

Im Falle der Transmission von Strahlung durch Materie-Schichten kann die Integrodifferentialgleichung durch Spezialisierung stark vereinfacht werden, so daß eine dem speziellen Problem angemessene analytische Lösung angegeben werden kann.

In Weiterführung des von MELCHER [1] für verschiedene Strahlenarten aufgefundenen einheitlichen Transmissionsgesetzes wird in der vorliegenden Arbeit eine Formulierung des Transmissionsgesetzes mit Hilfe von Matrixfunktionen vorgenommen. Dabei zeigt es sich, daß das in [1] angegebene Transmissionsgesetz eine spezielle Lösung der BOLTZMANNschen Integrodifferentialgleichung des Strahlungstransportes ist, wobei der Kern dieser Gleichung durch eine Matrixfunktion dargestellt werden kann.

1 Die Aufstellung der Integrodifferentialgleichung für Strahlungstransportvorgänge

Die Transportvorgänge werden durch die funktionale Abhängigkeit des Strahlungsflusses φ von dem Positionsvektor **r**, der Teilchengeschwindigkeit **v** und der Zeit t beschrieben:

$$d\varphi = \varphi(\mathbf{r}, \mathbf{v}, t). \tag{1}$$

¹Abstract: www.ewald-gerth.de/39abs.pdf – attached at the end of this article (page 42).

Das totale Differential von (l) ergibt

$$\mathrm{d}\varphi = \frac{\partial\varphi}{\partial\mathbf{r}}\mathrm{d}\mathbf{r} + \frac{\partial\varphi}{\partial\mathbf{v}}\mathrm{d}\mathbf{v} + \frac{\partial\varphi}{\partial t}\mathrm{d}t,\tag{2}$$

bzw. nach Einführung eines Ortsgradienten und eines Geschwindigkeitsgradienten -

$$d\varphi = \operatorname{grad}_{r} \varphi \, d\mathbf{r} + \operatorname{grad}_{v} \varphi \, d\mathbf{v} + \frac{\partial \varphi}{\partial t} dt.$$
(3)

Daraus folgt für die totale zeitliche Änderung des Strahlungsflusses

$$\frac{\mathrm{d}\varphi}{\mathrm{d}t} = \mathbf{v} \operatorname{grad}_{r} \varphi + \mathbf{a} \operatorname{grad}_{v} \varphi + \frac{\partial\varphi}{\partial t}.$$
(4)

Hierin ist $\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$ die Beschleunigung, die sich auf Grund der Einwirkung einer äußeren Kraft ergeben kann.

Der Geschwindigkeitsvektor **v** kann nach Betrag v und Richtung (Normalenvektor **n**) getrennt werden. Das ist erforderlich, um weiter unten die skalare Größe Energie E einzuführen,

$$\mathbf{v} = \mathbf{n} v$$
.

Damit schreibt man an Stelle von (l)

$$\varphi = \varphi(\mathbf{r}, \mathbf{n}v, t). \tag{1a}$$

Nunmehr soll die Bilanz des Strahlungsflusses im Zeitelement dt bestimmt werden, in dem die gestreuten Teilchen den Weg dr' zurücklegen. (Die Größen der gestreuten Teilchen werden durch einen Strich gekennzeichnet.) Die Menge der Teilchen eines vorgegebenen Geschwindigkeitsbereiches d**v** erfährt längs des Weges dr' Änderungen infolge von Streu- und Absorptionsprozessen. In das betrachtete Geschwindigkeitsintervall können aus anderen Geschwindigkeitsbereichen einerseits Teilchen hineingestreut, andererseits aber auch aus diesem Intervall herausgestreut werden. Der differentielle Strahlungsfluß der hineingestreuten Teilchen wird mit $(d\varphi)_{in}$ und der herausgestreuten Teilchen mit $(d\varphi)_{ex}$ bezeichnet. Schließlich sind noch Quellen im Streugebiet zu berücksichtigen, von denen der differentielle Strahlungsfluß $(d\varphi)_{Qu}$ ausgeht.

Aus der Bilanz der drei Anteile der zeitlichen Änderung des Strahlungsflusses, dargestellt durch die Summe

$$\frac{\mathrm{d}\varphi}{\mathrm{d}t} = \left(\frac{\mathrm{d}\varphi}{\mathrm{d}t}\right)_{ex} + \left(\frac{\mathrm{d}\varphi}{\mathrm{d}t}\right)_{in} + \left(\frac{\mathrm{d}\varphi}{\mathrm{d}t}\right)_{Qu},\tag{5}$$

ergibt sich die BOLTZMANNSche Integrodifferentialgleichung des Strahlungstransportes, indem man für die einzelnen Anteile die folgenden Beziehungen einsetzt:

1. Herausstreuung:

$$(\mathrm{d}\varphi)_{ex} = -S_t(v') \ \varphi(\mathbf{r}, \mathbf{n}'v', t) \ \mathrm{d}r' \tag{6}$$

 $S_t(v')$ ist der totale Streukoeffizient der Winkel- und Energiestreuung.

2. Hineinstreuung:

$$(\mathrm{d}\varphi)_{in} = + \int_{0}^{\infty} \int_{4\pi} S(v) \ g(\mathbf{n}'v', \mathbf{n}v) \ \varphi(\mathbf{r}, \mathbf{n}v, t) \ \mathrm{d}\mathbf{n} \ \mathrm{d}\mathbf{v} \ \mathrm{d}r' \tag{7}$$

S(v) ist der Koeffizient der Hineinstreuung und $g(\mathbf{n}'v',\mathbf{n}v)$ eine Übergangswahrscheinlichkeitsfunktion für die Streuprozesse.

3. Zusätzliche Quellen im Feld:

$$(\mathrm{d}\varphi)_{Qu} = +Q(\mathbf{r}, \mathbf{n}'v', t) \,\mathrm{d}r' \tag{8}$$

Damit lautet die BOLTZMANNsche Integrodifferentialgleichung in geschlossener Form:

$$\mathbf{n}' \operatorname{grad}_{r} \varphi(\mathbf{r}, \mathbf{n}'v', t) + \frac{\mathbf{a}}{v'} \mathbf{n}' \operatorname{grad}_{r} \varphi(\mathbf{r}, \mathbf{n}'v', t) + \frac{1}{v'} \frac{\partial \varphi(\mathbf{r}, \mathbf{n}'v', t)}{\partial t} =$$

$$= -S_{t}(v') \varphi(\mathbf{r}, \mathbf{n}'v', t) + \int_{0}^{\infty} \int_{4\pi} S(v) g(\mathbf{n}'v', \mathbf{n}v) \varphi(\mathbf{r}, \mathbf{n}v, t) \, \mathrm{d}\mathbf{n} \, \mathrm{d}\mathbf{v} + Q(\mathbf{r}, \mathbf{n}'v', t). \quad (9)$$

2 Spezialisierung der Transportgleichung für das Problem der Transmission von Kernstrahlung durch Materieschichten

Den folgenden theoretischen Betrachtungen liegt eine spezielle (fiktive) Meßanordnung zugrunde: Die Transmission von Strahlungen durch Materieschichten wird in der (meistens üblichen) Anordnung gemessen, in der ein paralleles Strahlenbündel einer außerhalb der Schicht befindlichen Quelle die Schicht durchsetzt und in einen Detektor eintritt, der sich ebenfalls außerhalb der betrachteten Schicht befindet.

Für dieses Problem der Transmissionsmessung – z.B. bei Kernstrahlungen – werden nun einige einschneidende Vereinfachungen der allgemeinen Gleichung (9) vorgenommen:

- 1. Auf den Strahlungsfluß sollen keine äußeren Kräfte einwirken, d.h., es gilt $\mathbf{a} = \mathbf{0}$, und damit verschwindet das zweite Glied in Gl. (9).
- Der Vorgang wird als ein stationärer Prozeß betrachtet, d.h., es liegt keine Zeitabhängigkeit der Quellstärke vor: Mit ∂φ/∂t = 0 verschwindet das dritte Glied in Gl. (9).
- 3. Es sollen im streuenden Bereich keine Quellen vorhanden sein. Mit $Q(\mathbf{r}, \mathbf{n}'v', t) = 0$ verschwindet auch das letzte Glied in Gl. (9). Die Quelle des konstanten Strahlungsflusses befindet sich außerhalb der streuenden Schicht.
- 4. Die Winkelstreuung soll unberücksichtigt bleiben; die Transmission wird also nur in einer Richtung betrachtet, so daß man den Ortsgradienten (erstes Glied) als Differentialquotienten der Wegkoordinate x schreiben kann.

Damit erhält man nun als Transportgleichung für einen kräfte- und quellenfreien, homogenen, stationären Strahlungsfluß der Energie E – statt der in Gl. (3) angegebenen Geschwindigkeit –

$$\frac{\partial\varphi(E',x)}{\partial x} = -\varphi(E',x) \int_{0}^{E'} N\sigma^*(E,E') \, \mathrm{d}E + \int_{E'}^{\infty} N\sigma^*(E,E') \, \varphi(E,x) \, \mathrm{d}E.$$
(10)

Hierin bedeuten σ den atomaren Wirkungsquerschnitt, σ^* den auf das Energie
intervall dE bezogenen (differentiellen) Wirkungsquerschnitt

$$\sigma^*(E1, E) = \frac{\mathrm{d}\sigma(E', E)}{\mathrm{d}E},\tag{11}$$

 $\varphi(E)$ die energetische Verteilungsfunktion des Strahlungsflusses Φ

$$\varphi(E) = \frac{\mathrm{d}\,\varphi(E)}{\mathrm{d}E} \tag{11a}$$

und N die Anzahl der Atome in der Volumeneinheit der Streusubstanz.

Für den Gesamtwirkungsquerschnitt σ_g und den Gesamtstrahlungsfluß \varPhi_g gelten die Beziehungen $_\infty$

$$\sigma_g(E) = \int_0^\infty \sigma^*(E', E) \, \mathrm{d}E' \tag{11b}$$

und

$$\Phi_g = \int_0^\infty \varphi(E) \, \mathrm{d}E. \tag{11c}$$

Bei dem betrachteten physikalischen Problem treten nur solche Energieänderungen auf, die von höheren zu niedrigeren Energien führen; das bedeutet, daß bei einem Streuakt das Teilchen nur Energie verlieren, niemals aber gewinnen kann. Somit ist die Richtung der Energieänderung festgelegt: $E \longrightarrow E'$. Demzufolge ist $\sigma^*(E', E) = 0$ für $E \leq E'$.

Gl. (10) ist in der vorliegenden Gestalt für eine Lösung schwer zugänglich. Durch eine charakteristische Eigenschaft der Funktion $\sigma^*(E', E)$, die aus dem physikalischen Sachverhalt folgt, läßt sich Gl. (10) derart umformen, daß sie als Integraltransformation dargestellt werden kann. In dem quadratischen Definitionsbereich von $\sigma^*(E', E)$ ist die Funktion identisch Null unterhalb der durch die Gleichung E' = E gegebenen Diagonale. Mit Hilfe der DIRACschen Delta-Funktion $\delta(E', E)$ für zwei unabhängige Variable können die beiden Summanden in Gl. (10) zusammengefaßt werden. Des weiteren wird die Integrationsvariable E'' eingeführt, um zu kennzeichnen, daß dieses Integral über die Wirkungsquerschnitte die Herausstreuung aus dem infinitesimalen Energieintervall dE' zu den niedrigeren Energiewerten E'' darstellt. Damit ergibt sich

$$\frac{\partial\varphi(E',x)}{\partial x} = \int_{0}^{\infty} \left[-\delta(E',E) \int_{0}^{E'} N\sigma^*(E'',E') \, \mathrm{d}E'' + N\sigma^*(E',E) \right] \varphi(E,x) \, \mathrm{d}E'.$$
(12)

Hierin stellt

$$-\delta(E', E) \int_{0}^{E'} N\sigma^*(E'', E') \, \mathrm{d}E'' + N\sigma^*(E', E) = K(E', E)$$
(13)

den Kern der Integrodifferentialgleichung

$$\frac{\partial}{\partial x} \varphi(E', x) = \int_{0}^{\infty} K(E', E) \varphi(E, x) dE$$
(14)

dar.

Durch Integration erhält man mit der Anfangsverteilung des Strahlungsflusses $\varphi(E,0)$ die äquivalente Integralgleichung

$$\varphi(E',x) = \varphi(E',0) + \int_0^x \int_0^\infty K(E',E) \ \varphi(E,\xi) \ \mathrm{d}E \ \mathrm{d}\xi.$$
(15)

Gl. (15) ist eine zweidimensionale, lineare, inhomogene Integralgleichung zweiter Art [2] mit der Vorgabe des festen Parameterwertes $\lambda = 1$. Bezüglich der Variablen x ist die Integralgleichung vom VOLTERRASCHEN Typ und bezüglich der Variablen E vom FREDHOLMSCHEN Typ.

Der Kern ist im allgemeinen Fall – z.B. bei inhomogenen Schichten – eine Funktion von x. Hier soll aber zunächst nur der Fall der homogenen Schicht betrachtet werden, wobei die Kernfunktion bezüglich der Schichtdicke konstant ist. Die Lösung von Gl. (15) kann mit Hilfe der Resolvente $T(E', E, x', x, \lambda)$ für eine zweidimensionale Integralgleichung angegeben werden, die gleichzeitig die Bedeutung einer GREENschen Einflußfunktion hat. Da in der Integralgleichung (15) x' = x und $\lambda = 1$ ist, reduziert sich das Argument auf die drei unabhängigen Variablen E', E und x. Die Funktion T(E', E, x) wird im folgenden als "Transformationsfunktion" bezeichnet, da sich hiermit die Lösung in Form einer Integraltransformation darstellen läßt:

$$\varphi(E', x) = \int_{0}^{\infty} T(E', E, x) \ \varphi(E, 0) \ \mathrm{d}E.$$
(16)

Durch die Transformation wird folgender physikalischer Sachverhalt analytisch zum Ausdruck gebracht: Vor dem Eintritt in die Schicht liegt eine bestimmte Energieverteilung des Strahlungsflusses vor, die als Folge der Streuwirkung in eine andere Verteilung umgesetzt – d.h. transformiert – wird.

Die Resolvente T(E', E, x) befriedigt auch die Integrodifferentialgleichung (14) und stellt somit eine partikuläre Lösung dieser Gleichung dar.

3 Die Strahlungstransmission durch zusammengesetzte Medien (Mehrfachschichten)

Es soll nun der Fall untersucht werden, daß die Strahlung mehrere Schichten durchsetzt, die sich in ihren Streueigenschaften unterscheiden. Die einzelnen Schichten verschiedenen Materials können durch die Angabe der Ordnungszahl Z, der relativen Atommasse A und der Dichte Q gekennzeichnet werden. Der Schwächungs- oder Wechselwirkungskoeffizient $\mu = N\sigma$ hängt außer von der Energie der betreffenden Strahlung und Strahlungsart von diesen drei Materialgrößen ab.

Zunächst wird die Transmission der Strahlung durch zwei verschiedene Schichten unterschiedlicher Streueigenschaften betrachtet. Durch Induktionsschluß folgt daraus die allgemeine Beziehung für n Schichten.

Für die Transmission der Strahlung durch die erste Schicht gilt

$$\varphi(E', x_1) = \int_{0}^{\infty} T_1(E', E, x_1) \ \varphi(E, 0) \ \mathrm{d}E.$$
(17)

Die Austrittsenergie E' der ersten Schicht ist zugleich die Anfangsenergie der zweiten Schicht. Somit gilt für die energetische Verteilung des Strahlungsflusses nach Durchdringen der zweiten Schicht

$$\varphi(E'', x_2) = \int_0^\infty T_2(E'', E', x_2) \ \varphi(E', x_1) \ \mathrm{d}E'.$$
(18)

Substituiert man 01. (17) in (18), so folgt für die Transmission durch beide Schichten

$$\varphi(E'', x_1 + x_2) = \int_0^\infty \int_0^\infty T_2(E'', E', x_2) T_1(E', E, x_1) \ \varphi(E, 0) \ dE \ dE',$$

also

$$\varphi(E'', x_1 + x_2) = \int_0^\infty T_{1+2}(E'', E, x_1 + x_2) \ \varphi(E, 0) \ \mathrm{d}E, \tag{19}$$

wobei

$$T_{1+2}(E'', E, x_1 + x_2) = \int_0^\infty T_2(E'', E', x_2) T_1(E', E, x_1) \, \mathrm{d}E'$$
(20)

ist.

Die Transformationsfunktionen T_1 und T_2 sind im allgemeinen verschieden.

Die Umkehrung der Reihenfolge beider Schichten führt an Stelle von Gl. (20)zu der resultierenden Transformationsfunktion

$$T_{2+1}(E'', E, x_1 + x_2) = \int_{0}^{\infty} T_1(E'', E', x_1) T_2(E', E, x_2) \, \mathrm{d}E'$$
(21)

Der Übergang der Energien von E nach E' und E'' erfolgt wiederum im Sinne einer Verminderung (Dissipation), so daß ebenso wie bei Gl. (20) E > E' > E'' ist. Die einzelnen Transformationsfunktionen sind aber miteinander vertauscht.

Durch Vergleich von Gl. (21) mit Gl. (20) wird ersichtlich, daß jeweils über andere Funktionswerte der Transformationsfunktionen T_1 und T_2 integriert wird. Daraus folgt, daß die Integrationsreihenfolge nicht ohne weiteres vertauschbar ist; d.h., die Vertauschung führt im allgemeinen zu unterschiedlichen Ergebnissen.

Das bedeutet, daß der **Transmissionsprozeß** durch Mehrfachschichten im allgemeinen nicht kommutativ ist.

Die Nichtkommutativität ist ein hervorstechendes Merkmal der Matrizenmultiplikation. Auch die vorstehenden Integralrelationen lassen sich in analoger Weise wie Verknüpfungen von Matrizen auffassen.

4 Die Strahlungstransmission in Matrizendarstellung

Eine Integralgleichung kann nach SCHMEIDLER als ein unendliches System linearer Gleichungen dargestellt werden [2, S. 120 ff.]. Die Analogie zu den linearen Gleichungen war bereits der leitende Gedanke, der FREDHOLM zu seiner Theorie der Integralgleichungen führte [2. S. 3]. Die Koeffizientenmatrix des linearen Gleichungssystems ist dann gleichbedeutend mit der Kernfunktion; sie kann daher auch als Kernmatrix bezeichnet werden. Der Vektor der unabhängigen Variablen entspricht der gesuchten Funktion der Integralgleichung. Die Integralgleichungen lassen sich somit durch unendliche Matrizen und Vektoren darstellen, die den gesamten Funktionsbereich kontinuierlich mit ihren Elementen ausfüllen.

Die konsequente Anwendung des Matrizenformalismus führt bei Integralgleichungen zu einer wesentlichen Vereinfachung der Symbolik: Die Integrationen werden durch Matrizenoperationen ersetzt. Damit ist eine eindeutige Umkehrbarkeit beider Schreibweisen gegeben: Man kann von den Matrizenoperationen ohne weiteres wieder zu den Integraloperationen übergehen. Durch die Matrizendarstellung werden aber neben der Vereinfachung der Symbolik, der besseren Übersichtlichkeit der Schreibweise, vor allem Vorteile in der Methodik der analytischen Behandlung von Integralgleichungen [2] erzielt, wie aus den folgenden Darlegungen ersichtlich sein wird.

Um zur Matrizendarstellung der Strahlungstransmission zu gelangen, wird die energetische Strahlungsflußverteilung $\varphi(E)$ durch einen Vektor **f** ersetzt, dessen unendlich viele Koordinaten den Energiewerten zugeordnet sind: **f** $\triangleq \varphi(E)$. Die in der Integrodifferentialgleichung (14) bzw. der Integralgleichung (15) enthaltene Kernfunktion **K**(E', E) wird durch eine quadratische Matrix **K** mit unendlich vielen Elementen, die Kernmatrix, ersetzt: **K** \triangleq **K**(E', E). Diese Matrix braucht nur für den betrachteten quadratischen Definitionsbereich bekannt zu sein.

Damit kann man nun die Integrodifferentialgleichung (14) als Matrizengleichung schreiben: d

$$\frac{\mathrm{d}}{\mathrm{d}x}\mathbf{f}(x) = \mathbf{K}\mathbf{f}(x). \tag{22}$$

In dieser Schreibweise braucht nur noch die Abhängigkeit von der Ortsvariablen x gekennzeichnet zu werden. Die Energieabhängigkeit ist bereits durch die Matrixstruktur festgelegt.

Die zu Gl. (22) gehörende äquivalente Integralgleichung lautet – im Gegensatz zu Gl. (15) – x

$$\mathbf{f}(x) = \mathbf{f}(0) + \int_{0} \mathbf{K} \mathbf{f}(\xi) \, \mathrm{d}\xi.$$
(23)

Diese Integralgleichung läßt sich durch Iteration auf einfache Weise lösen, indem man die NEUMANNsche Reihe entwickelt.

Für den Anfangsvektor $\mathbf{f}(x_0) = \mathbf{f}(0)$ ergibt der erste Iterationsschritt unter Benutzung der Einheitsmatrix $\mathbf{1}$

$$\mathbf{f}(x_1) = \mathbf{f}(x_0) + \mathbf{K}x\mathbf{f}(0) = (\mathbf{1} + \mathbf{K}x)\mathbf{f}(0)$$
(24)

und der zweite Iterationsschritt

$$\mathbf{f}(x_2) = \mathbf{f}(0) + \int_0^x \mathbf{K}(\mathbf{1} + \mathbf{K}\xi)\mathbf{f}(0) \, \mathrm{d}\xi = \left(\mathbf{1} + \mathbf{K}x + \frac{1}{2}\mathbf{K}^2x^2\right)\mathbf{f}(0).$$
(25)

Durch wiederholtes Substituieren erhält man schließlich die NEUMANNsche Reihe zu Gl. (23)

$$\mathbf{f}(x) = \left(\mathbf{1} + \mathbf{K}x + \frac{1}{2!}\mathbf{K}^2x^2 + \frac{1}{3!}\mathbf{K}^3x^3 + \cdots\right)\mathbf{f}(0).$$
 (26)

Mit dem in der Klammer stehenden Ausdruck

$$\mathbf{f}(x) = \mathbf{1} + \mathbf{K}x + \frac{1}{2}\mathbf{K}^2 x^2 + \frac{1}{3!}\mathbf{K}^3 x^3 + \dots = \sum_{k=0}^{\infty} \frac{1}{k!}\mathbf{K}^k x^k,$$
 (27)

der mit der Definition von $\mathbf{K}^0 = \mathbf{1}$ zu einer Summe analog der Reihenentwicklung der Exponentialfunktion zusammengefaßt werden kann, läßt sich die Lösung nach Gl. (26) als Vektor-Transformationsgleichung schreiben, bei der die Transformation durch die quadratische Matrix $\mathbf{T}(x)$ bewirkt wird,

$$\mathbf{f}(x) = \mathbf{T}(x)\mathbf{f}(0). \tag{28}$$

Gl. (28) ist Gl. (16) äquivalent. Die Transformationsmatrix (Resolventenmatrix) $\mathbf{T}(x)$ ist eine partikuläre Lösung von Gl. (22). Diese Matrix wird auf Grund der formalen Übereinstimmung mit einer Exponentialfunktion in Reihendarstellung nach Gl. (27) als "Matrix-Exponential-funktion" bezeichnet und in der Form

$$\mathbf{T}(x) = e^{\mathbf{K}x}.\tag{29}$$

geschrieben [3, S. 165].

Die der Gl. (16) entsprechende Lösung der BOLTZMANNschen Integrodifferentialgleichung für den speziellen Fall des kräfte- und quellenfreien, homogenen, stationären Strahlungsfeldes lautet somit

$$\mathbf{f}(x) = e^{\mathbf{K}x}\mathbf{f}(0). \tag{30}$$

Diese Gleichung entspricht formal dem LENARDschen Transmissionsgesetz

$$I = I_0 e^{-\mu x},$$

worin I die Intensität der Strahlung und μ der Schwächungskoeffizient sind; sie ist jedoch von allgemeinerer Bedeutung. Geht man zum skalaren Fall über, wobei der Vektor **f** nur aus einem Element bestehen, d.h. nur eine einzige Energiekomponente enthalten soll, die von einem geeigneten Detektor nur für eben diesen Energiewert nachweisbar ist, so findet man als Spezialfall der Gl. (30)

$$f(x) = e^{-\mu x} f(0). \tag{31}$$

Hierin stellt $e^{-\mu x}$ einen Wahrscheinlichkeitsfaktor dar, den man am besten vor die Funktion f(0) setzt, was dann der Definition der zugehörigen Matrizenverknüpfung entsprechen würde.

5 Die Diskretisierung der Strahlungstransportgleichung

Von praktischer Bedeutung für die Berechnung der Strahlungstransmission ist selbstverständ-lich nicht eine unendliche Matrix oder ein Vektor mit unendlich vielen Komponenten. Um zu konkreten Werten übergehen zu können, muß man die Ordnung der Matrix und die Anzahl der Komponenten des Vektors auf eine endliche Größe beschränken. Hierbei wird für einen gegebenen Energiebereich eine Diskretisierung der energetischen Verteilung des Strahlungsflusses sowie der Kernfunktion vorgenommen, indem bestimmte Energieintervalle, in denen das Integral der Funktionswerte gebildet wird, zusammengefaßt werden.

So ergibt die Integration der Gl. (10) über das Energieintervall $\triangle E_i = E_i - E_{i-1}$

$$\frac{\partial}{\partial x} \Big(\int_{E_{i-1}}^{E_i} \varphi(E', x) \, \mathrm{d}E' \Big) =$$

$$= -\int_{E_{i-1}}^{E_i} \varphi(E', x) \int_{E_0}^{E'} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E_{i-1}}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E_{i-1}}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E_{i-1}}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E_{i-1}}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E_{i-1}}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E_{i-1}}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E_{i-1}}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E_{i-1}}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E_{i-1}}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E_{i-1}}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E_{i-1}}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E_{i-1}}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E \, \mathrm{d}E' + \int_{E'}^{E_i} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E' \, \mathrm{d}E' + \int_{E'}^{E'} \int_{E'}^{E'} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E' \, \mathrm{d}E' + \int_{E'}^{E'} \int_{E'}^{\infty} N\sigma^*(E', E) \, \varphi(E, x) \, \mathrm{d}E' \, \mathrm{d}E' + \int_{E'}^{E'} \int_{E$$

Der Strahlungsfluß für das Energieintervall $\triangle E_i$ ist

$$\int_{E_{i-1}}^{E_i} \varphi(E') \, \mathrm{d}E' = \Delta \Phi_i. \tag{33}$$

Nach dem Mittelwertssatz der Integralrechnung kann man somit die energetische Strahlungsflußverteilung dieses Intervalls durch den mittleren Wert

$$\overline{\varphi}(E')_i = \frac{\bigtriangleup \Phi_i}{\bigtriangleup E_i} \tag{34}$$

ersetzen. Eine entsprechende Beziehung gilt dann auch für den von E abhängigen Strahlungsfluß; hierfür wird der Index k verwendet. Unter der Annahme, daß im Intervall $\triangle E_i$ näherungsweise $\overline{\varphi_i} = \text{const gesetzt werden darf, kann man Gl. (32) wie folgt schreiben:$

$$\frac{\partial}{\partial x} \Big(\bigtriangleup \varPhi_i(x) \Big) =$$

$$= -\Delta \Phi_{i}(x) \frac{1}{\Delta E_{i}} \int_{E_{i-1}}^{E_{i}} \int_{E_{o}}^{E_{i}} N\sigma^{*}(E, E') dE dE' +$$
$$+ \sum_{k=i+1}^{\infty} \frac{\Delta \Phi_{k}(x)}{\Delta E_{i}} \cdot \int_{E_{i-1}}^{E_{i}} \int_{E_{k-1}}^{E_{k}} N\sigma^{*}(E', E) dE dE'.$$
(35)

Führt man nun für die in Gl. (35) enthaltenen Integrale die Abkürzungen

$$\mu_{ik} = \frac{1}{\triangle E_i} \int_{E_{i-1}}^{E_i} \int_{E_0}^{E_i} N\sigma^*(E, E') \, dE \, dE' \qquad \text{für} \qquad i = k \qquad (36)$$

$$\mu_{ik} = \frac{1}{\triangle E_k} \int_{E_{i-1}}^{E_i} \int_{E_{k-1}}^{E_k} N\sigma^*(E', E) \, dE \, dE' \qquad \text{für} \qquad i < k \tag{37}$$

und

ł

$$\mu_{ik} = 0 \qquad \qquad \text{für} \qquad i > k$$

ein, so ergibt sich die *i*-te Gleichung eines D'ALEMBERTschen Differentialgleichungssystems unendlicher Ordnung,

$$\frac{\mathrm{d}}{\mathrm{d}x}(\Delta \Phi_i(x)) = \sum_{k=1}^{\infty} \mu_{ik} \Delta \Phi_k(x), \qquad (38)$$

das nach Ersetzen von $\triangle \Phi_i$ durch f_i in der Matrizenform gemäß Gl. (22) geschrieben werden kann.

Bei einer numerischen Auswertung ist es nicht erforderlich, unendliche Energiebereiche zu betrachten, da die in der Praxis zur Verfügung stehenden Energien stets endlich sind. Demzufolge bestehen die Vektoren der diskretisierten Strahlungsflußverteilung aus einer endlichen Anzahl von Elementen. Die Angabe von Kernmatrizen und Transformationsmatrizen von höherer Ordnung als der Komponentenzahl des zu transformierenden Vektors bedeutet eine unnötige Belastung des Rechenapparates, zumal die Strahlung infolge der Energiedissipation keine Streuung zu höheren Energiestufen erfährt. Für einen Strahlungsflußverteilungsvektor mit der durch n indizierten höchsten Energiestufe genügt somit ein D'ALEMBERTsches Differentialgleichungssystem der Form

$$\frac{\mathrm{d}}{\mathrm{d}x}f_i(x) = \sum_{k=1}^{\infty} \mu_{ik}f_k(x).$$
(39)

Das Schema der Koeffizienten μ_{ik} bildet die diskretisierte Kernfunktion der Integrodifferentialgleichung (14). Die Koeffizientenmatrix kann deshalb auch in diesem Falle als Kernmatrix bezeichnet werden.

Die Größen μ_{ik} haben die physikalische Bedeutung von Schwächungskoeffizienten. Im speziellen Fall des LENARDschen Transmissionsgesetzes nach Gl. (31) besteht die Kernmatrix aus nur einem Element μ .

6 Die analytische Lösung des D'Alembertschen Systems

Für die Lösung des durch die Diskretisierung erhaltenen endlichen Differentialgleichungssystems sind eine Anzahl von Methoden bekannt. Als ungeeignet für eine

auf der analytischen Lösung aufbauende numerische Behandlung des Differentialgleichungssystems sind solche Methoden anzusehen, bei denen die unbestimmten Integrationskonstanten erst aus den Anfangsbedingungen ermittelt werden müssen. Die hier angeführte Reihenentwicklung der Matrix-Exponentialfunktion gestattet eine unmittelbare Lösung des Anfangswertproblems. Es sei darauf hingewiesen, daß dies auch bei dem Lösungsverfahren mit Hilfe der LAPLACE-Transformation möglich ist. Als ein günstiger Umstand erweist es sich im Falle der Strahlungstransmission, daß alle auftretenden Matrizen Dreiecksmatrizen sind, so daß sich das Eigenwertspektrum unmittelbar aus den Hauptdiagonalelementen der Kernmatrix entnehmen läßt. Ein Vorzug dieses Lösungsverfahrens besteht darin, daß man für alle Elemente der Transformationsmatrix analytische Ausdrücke angeben kann. Die LAPLACE-Transformierte der Matrix-Exponentialfunktion Gl. (29) – durch eine Tilde gekennzeichnet – folgt aus der Beziehung

$$\widetilde{\mathbf{T}}(s) = \int_{0}^{\infty} e^{-\mathbf{1}sx} e^{\mathbf{K}x} = (\mathbf{1}s - \mathbf{K})^{-1}$$
(40)

mit der unabhängigen komplexen Variablen s im Bildraum der Transformation. Nach der Inversion der charakteristischen Matrix $\mathbf{1}s - \mathbf{K}$ können mit den bei DOETSCH [3] angegebenen Korrespondenzbeziehungen alle Matrixelemente einzeln aus dem Bildraum in den Originalraum der LAPLACE-Transformation zurücktransformiert werden.

7 Einige Folgerungen aus der Matrizendarstellung der Lösung der Transportgleichung

7.1 Der Transformationscharakter der Streuung

Aus der Form der Lösung nach Gl. (28) und (29) ist der Transformationscharakter der mit Energiestreuung verbundenen Transmission von Strahlung durch Materieschichten unmittelbar zu entnehmen².

Die Transformation kann von beliebigen Anfangsverteilungen ausgehen. Dies ist insbesondere für die Untersuchung der Spektren der Beta-Strahlung von großer praktischer Bedeutung, da diese von vornherein eine breit aufgefächerte energetische Verteilung aufweisen.

Darüber hinaus ist es möglich, mit der Kenntnis einer aus der Transformation resultierenden Endverteilung auf die Ausgangsverteilung rückzuschließen. Zu diesem Zweck wird Gl. (28) invertiert,

$$\mathbf{f}(0) = \mathbf{T}(x)^{-1} \mathbf{f}(x).$$
(41)

Die inverse Transformationsmatrix $\mathbf{T}(x)^{-1}$ ergibt sich bei einer Matrix-Exponentialfunktion auf äußerst einfache Weise durch Vorzeichenumkehr der unabhängigen Variablen x,

$$\mathbf{T}(x)^{-1} = (e^{\mathbf{K}x})^{-1} = e^{-\mathbf{K}x} = \mathbf{T}(-x).$$
(42)

 $^{^{2}}$ Analoge, aber weitaus kompliziertere Transformationsbeziehungen gelten auch für die Winkelstreuung, die in der vorliegenden Arbeit (s. 7.8.) unberücksichtigt bleibt.

³³

Mehrfachtransformationen ergeben sich auf Grund der multiplikativen Verknüpfung der Transformationsgleichung (28) durch Produktbildung der Transformationsmatrizen.

7.2 Die Nichtkommutativität der Transmission bei heterogenen Mehrfachschichten

Die Nichtkommutativität der Strahlungstransmission durch Mehrfachschichten verschiedenen Materials kann mit Hilfe von Matrizen besonders einfach dargestellt werden.

Für die Transmission der Strahlung durch die erste Schicht gilt die Transformationsbeziehung

$$\mathbf{f}(x_1) = \mathbf{T}_1(x_1)\mathbf{f}(0). \tag{43}$$

Die energetische Verteilung der Strahlung nach der ersten Schicht ist zugleich die Ausgangsverteilung für die sich anschließende zweite Schicht, deren Transmissionswirkung dann durch

$$\mathbf{f}(x_2) = \mathbf{T}_2(x_2)\mathbf{f}(x_1) \tag{44}$$

beschrieben wird.

Die Transformation der beiden miteinander kombinierten Schichten ist gleichbedeutend mit einer zweifachen Transformation mit Hilfe der quadratischen Matrizen $\mathbf{T}_1(x_1)$ und $\mathbf{T}_2(x_2)$:

$$\mathbf{f}(x_1 + x_2) = \mathbf{T}_2(x_2)\mathbf{T}_1(x_1)\mathbf{f}(0).$$
(45)

Hierbei ist besonders auf die Reihenfolge der Transformationen zu achten. Bei der Transmission der Strahlung durch heterogene Schichten müssen die Transformationsmatrizen der einzelnen Schichten unterschieden werden,

$$\mathbf{T}_{1,2}(x_1 + x_2) = \mathbf{T}_2(x_2)\mathbf{T}_1(x_1).$$
(46)

Kehrt man die Reihenfolge der Schichten um, so folgt

$$\mathbf{T}_{2,1}(x_2 + x_1) = \mathbf{T}_1(x_1)\mathbf{T}_2(x_2). \tag{47}$$

In der Vertauschungsrelation

$$\mathbf{T}_{2}(x_{2})\mathbf{T}_{1}(x_{1}) - \mathbf{T}_{1}(x_{1})\mathbf{T}_{2}(x_{2}) = \mathbf{D}$$
(48)

ist die Differenzmatrix bei nichtkommutativen Transformationsmatrizen $\mathbf{D} \neq \mathbf{0}$, bei kommutativen Matrizen dagegen gleich der Nullmatrix: $\mathbf{D} = \mathbf{0}$.

Kommutativ sind in jedem Falle Transformationsmatrizen für gleiches Schichtmaterial.

Voraussetzung für die Kommutativität der Transformationsmatrizen ist die Kommutativität der Kernmatrizen.

7.3 Die Berechnung der Zählrate

Bei der konsequenten Anwendung des Matrizenformalismus auf die Strahlungstransmission läßt sich auch ein Ausdruck für die Berechnung der Zählrate angeben, die im allgemeinen kleiner (oder höchstens gleich) dem die Projektionsfläche des Detektors durchsetzenden Strahlungsfluß ist. Zu den Korrekturen der mit einem Strahlungsdetektor gemessenen Werte des Strahlungsflusses, die in Form einer äquivalenten Zählrate vorliegen, gehört auch die energieabhängige Nachweisempfindlichkeit des Detektors, worauf schon in [1] hingewiesen wurde.

Die Nachweisempfindlichkeit wird in der Matrizenschreibweise durch einen Zeilenvektor \mathbf{w} ausgedrückt, dessen Elemente für das jeweilige Energieintervall die Wahrscheinlichkeit dafür angeben, daß das betrachtete Strahlungskorpuskel durch den Detektor nachgewiesen wird.

Man erhält dann die Zählrate z als das Skalarprodukt des Zeilenvektors **w** mit dem Spaltenvektor **f** der energetischen Verteilung des Strahlungsflusses,

$$z = \mathbf{wf}.\tag{49}$$

Auf diese Weise werden nur die Korpuskeln gezählt, die entsprechend der (energieabhängigen) Nachweisempfindlichkeit tatsächlich nachgewiesen werden können. Nach der Transmission der Strahlung durch eine Schicht ist die Zählrate dadurch gegeben, daß der Vektor **f** durch den transformierten Vektor $\mathbf{T}(x)\mathbf{f}(0)$ ersetzt wird:

$$z(x) = \mathbf{wT}(x)\mathbf{f}(0). \tag{50}$$

Gl. (50) ist eine allgemeine analytische Beziehung für die Zählrate z als Funktion der Schichtdicke x. Nach bisher bekannten Darstellungen [1,5] ist z(x) eine kompliziert aufgebaute Funktion, die mit guter Näherung durch die (komplementäre) unvollständige Gamma-Funktion I^* beschrieben werden kann.

7.4 Die Darstellung des transmittierten Strahlungsflusses

Um den gesamten Strahlungsfluß zu erfassen, hat man alle seine Bestandteile zu summieren.

Zu dem gleichen Ergebnis gelangt man, wenn man an Stelle des Zeilenvektors der Nachweisempfindlichkeit den Einer-Vektor \mathbf{e} einführt, durch den für jeden Energiewert die Nachweiswahrscheinlichkeit Eins wird, so daß grundsätzlich alle auf die Querschnittsfläche des Detektors treffenden Teilchen gezählt werden. Mit $\mathbf{w} = \mathbf{e}$ gilt

$$\Phi = \mathbf{ef},\tag{51}$$

und für den durch eine Schicht der Dicke x transmittierten Strahlungsfluß erhält man

$$\Phi(x) = \mathbf{eT}(x)\mathbf{f}.$$
(52)

7.5 Die Bestandteile des Zeilenvektors der Nachweiswahrscheinlichkeit

Ein idealer Detektor besitzt die Nachweiswahrscheinlichkeit 1 für alle Energiewerte, so daß $\mathbf{w} = \mathbf{e}$ ist; ein realer Detektor weist dagegen eine energieabhängige Nachweiswahrscheinlichkeit auf, die zum Teil durch die physikalischen Eigenschaften des empfindlichen Volumens, zum Teil aber auch durch die energieabhängige Absorption des Materials der Detektoreinbettung (Gehäuse, Eintrittsfenster usw.) erklärt werden kann. Nur der letztere Anteil soll hier erörtert werden. Eine mit dem Detektor fest verbundene Materieschicht verändert durch ihre Transmissionseigenschaft die Nachweiswahrscheinlichkeit des Detektors. Selbst ein idealer Detektor würde durch eine solche zusätzliche Schicht mit der Transformationsmatrix \mathbf{T}_D eine energieabhängige Nachweis-Wahrscheinlichkeit erhalten, die durch den Zeilenvektor

$$\mathbf{w} = \mathbf{eT}_D. \tag{53}$$

dargestellt werden kann. Der resultierende Zeilenvektor ergibt sich durch rechtsseitige Multiplikation mit der Transformationsmatrix.

7.6 Definition einer mittleren Reichweite

Im Gegensatz zu den bisher üblichen Reichweite-Definitionen, die von mehr oder weniger künstlichen Konstruktionen an empirischen Transmissionskurven ausgehen, wird hier eine Reichweite-Definition eingeführt, die von der Anwendung des Mittelwertsatzes der Integralrechnung Gebrauch macht:

$$\overline{x} = \frac{1}{\Phi(0)} \int_{0}^{\infty} \Phi(x) \, \mathrm{d}x.$$
(54)

Die mittlere Reichweite kann auch durch die Transformationsmatrix dargestellt werden:

$$\overline{x} = \frac{1}{\mathbf{e}\mathbf{f}(0)} \int_{0}^{\infty} \mathbf{T}(x) \, \mathrm{d}x \, \mathbf{f}(0) = -\frac{\mathbf{e}\mathbf{K}^{-1}\mathbf{f}(0)}{\mathbf{e}\mathbf{f}(0)}; \tag{55}$$

es gilt darin

$$\int_{0}^{\infty} \mathbf{T}(x) \, \mathrm{d}x = \int_{0}^{\infty} e^{\mathbf{K}x} \, \mathrm{d}x = \left[\mathbf{K}^{-1} e^{\mathbf{K}x}\right]_{0}^{\infty} = -\mathbf{K}^{-1}.$$
 (55a)

Die über die unendlich dicke Schicht erstreckte Integration der Matrixfunktion $\mathbf{T}(x)$ ergibt somit die negative inverse Kernmatrix.

Bei einem diskretisierten Problem ist die Kernmatrix gleich der Koeffizientenmatrix eines D'ALEMBERTschen Differentialgleichungssystems. In diesem Falle kann die inverse Koeffizientenmatrix stets gebildet werden. Bei einem nichtdiskreten Problem hängt die Invertierbarkeit von der Art der Kernfunktion ab [2].

Mit der Diskretisierung eines an sich nichtdiskreten Problems ist stets ein Verlust an Genauigkeit verbunden. Somit hängt die erzielbare Genauigkeit von dem Grad der Diskretisierung ab. Der derzeitige Stand der elektronischen Rechentechnik ermöglicht aber bereits einen derartig hohen Feinheitsgrad der Diskretisierung, daß praktisch – je nach Rechenaufwand – Ergebnisse mit beliebiger Genauigkeit erzielt werden können.
7.7 Vereinfachung der Rechnung durch Diskretisierung

Durch Diskretisierung der BOLTZMANNschen Integrodifferentialgleichung (14) erhält man ein D'ALEMBERTsches Differentialgleichungssystem. Dieses System beschreibt eine endliche Anzahl miteinander durch Übergangswahrscheinlichkeiten gekoppelter Zustände. Läßt sich eine solche Zustandsfolge in einer linearen Kette anordnen, so spricht man von einer MARKOWschen Kette [4]. Die Diskretisierung der Transportgleichung besteht hier darin, daß man die Energiedissipation der Strahlung über diskrete Energiestufen als eine MARKOWsche Kette auffassen kann.

Die Grundlage für diese Betrachtung wurde bereits in früheren Arbeiten von MEL-CHER [1,5] dargelegt. Darin wurde u.a. für den Teilchendurchgang durch Materieschichten ein Differentialgleichungssystem angegeben, das den Sachverhalt beschreibt, daß der Schwächungskoeffizient ivon Streuakt zu Streuakt eine Vergrößerung erfährt. Dieses lineare Differentialgleichungssystem 1. Ordnung mit konstanten Koeffizienten (D'ALEMBERTsches System) wurde in einer Arbeit von GERTH [8] mit Hilfe der LA-PLACE-Transformation gelöst, wobei das Ergebnis eine Matrixgleichung ist, die bei der Anwendung auf das Strahlungstransportproblem die Veränderung der Zustandsverteilung durch die Transmission beschreibt.

In der vorliegenden Arbeit kann nun aus der (spezialisierten) BOLTZMANNschen Transportgleichung die (diskretisierte) Transmissionsfunktion gefolgert werden, die sich – wie auf anderem Wege in [1] gezeigt wurde – in guter Näherung durch eine Summe von Exponentialfunktionen darstellen läßt. Damit ist nachgewiesen, daß sich die in [1] durch andere Überlegungen gefundenen Transmissions- und Übertragungsfunktionen auch aus der allgemeinen Strahlungstransportgleichung herleiten lassen.

In den folgenden Beispielen soll an Hand dreireihiger Matrizen der Zusammenhang zwischen der Matrizenschreibweise des Strahlungstransportes und den in [1] angegebenen Summenformeln der Transmission aufgezeigt werden. Diese Überlegungen lassen sich dann leicht auf Matrizen beliebiger Ordnung übertragen.

In Abb. l ist das Schema einer dreigliedrigen MARKOWschen Kette angegeben, in der nur Folgereaktionen auftreten.

Abb. 1. Schema einer dreigliedrigen MARKOWschen Kette

Dies entspricht dem physikalischen Sachverhalt, daß die Strahlungsteilchen bei der Streuung nur Energieänderungen im Sinne einer Abnahme erfahren. Die örtliche Änderung des Strahlungsflusses f_i der Energiestufe i wird durch den Abgang aus der Stufe i und dem Zugang aus der nächsthöheren benachbarten Stufe i + 1 bestimmt. Daraus ergibt sich folgendes Differentialgleichungssystem:

$$\frac{df_1}{dx} = -\mu_1 f_1 + \mu_2 f_2
\frac{df_2}{dx} = -\mu_2 f_2 + \mu_3 f_3
\frac{df_3}{dx} = -\mu_3 f_3$$
(56)

Die Kern- bzw. Koeffizientenmatrix

$$\mathbf{K} = \begin{pmatrix} -\mu_1 & \mu_2 & 0\\ 0 & -\mu_2 & \mu_3\\ 0 & 0 & -\mu_3 \end{pmatrix}$$
(57)

ist eine Dreiecksmatrix mit negativen Elementen in der Hauptdiagonale. Aus dieser Tatsache folgt, daß die Eigenwerte (charakteristischen Wurzeln) einfach durch die Elemente der Hauptdiagonale gegeben sind. Weiterhin ist durch die negative Spur der Koeffizientenmatrix die Konvergenzbedingung für die LAPLACE-Transformation erfüllt.

Durch Anwendung der LAPLACE-Transformation nach Gl. (32) erhält man für die Transformationsmatrix im Bildraum

$$\widetilde{\mathbf{T}}(s) = \begin{pmatrix} \frac{1}{s+\mu_1} & \frac{\mu_2}{(s+\mu_1)(s+\mu_2)} & \frac{\mu_2\mu_3}{(s+\mu_1)(s+\mu_2)(s+\mu_3)} \\ 0 & \frac{1}{s+\mu_2} & \frac{\mu_3}{(s+\mu_2)(s+\mu_3)} \\ 0 & 0 & \frac{1}{s+\mu_3} \end{pmatrix}$$
(58)

Die Rücktransformation in den Originalraum ergibt – wie bei DOETSCH[3]beschrieben –

$$\mathbf{T}(s) = \begin{pmatrix} e^{-\mu_1 x} & \mu_2 e^{-\mu_1 x} * e^{-\mu_2 x} & \mu_2 \mu_3 e^{-\mu_1 x} * e^{-\mu_2 x} * e^{-\mu_3 x} \\ 0 & e^{-\mu_2 x} & \mu_3 e^{-\mu_2 x} * e^{-\mu_3 x} \\ 0 & 0 & e^{-\mu_3 x} \end{pmatrix}.$$
(59)

Die hierin enthaltenen Faltungsprodukte repräsentieren Summen von Exponentialfunktionen, für welche die Beziehung

$$\prod_{i=1}^{n} *e^{-\mu_{i}x} = \sum_{i=1}^{n} \frac{e^{-\mu_{i}x}}{\prod\limits{\substack{j=1\\i\neq j}}^{n} (\mu_{i} - \mu_{j})}$$
(60)

gilt. Durch diese Schreibweise wird eine übersichtlichere Darstellung der Transformationsmatrix erzielt als bei vollständiger Ausschreibung der Summen.

Die Kernmatrix nach 01. (57) gibt den (vereinfachten) physikalischen Sachverhalt wieder, wonach angenommen wird, daß für jeden der diskreten Energiewerte die Integrale der Herausstreuung zu je einem Wert zusammengefaßt werden können, der dem Koeffizienten μ_i entspricht. Die negativen μ -Werte der Hauptdiagonale kennzeichnen die Herausstreuung aus dem diskretisierten Energieintervall, dagegen entsprechen die positiven μ -Werte der oberen Parallelreihe zur Hauptdiagonale der Hineinstreuung.

Diese vereinfachende Lösung hat sich bei vielen praktischen Berechnungen bewährt [1].

Zur Berechnung der mittleren Reichweite nach Gl. (55) für dieses Beispiel einer dreireihigen Kernmatrix hat man die inverse Matrix zu Gl. (57) zu bilden,

$$\mathbf{K}^{-1} = \begin{pmatrix} -\frac{1}{\mu_1} & -\frac{1}{\mu_1} & -\frac{1}{\mu_1} \\ 0 & -\frac{1}{\mu_2} & -\frac{1}{\mu_2} \\ 0 & 0 & -\frac{1}{\mu_3} \end{pmatrix}.$$
 (61)

Der Dreieckscharakter der Matrix bleibt bei der Inversion erhalten. In den Zeilen der inversen Kernmatrix stehen – außer den verschwindenden Elementen unterhalb der Hauptdiagonale – stets gleiche Matrixelemente.

Zur Berechnung der mittleren Reichweite x für eine mono-energetische Strahlung braucht man nur die Elemente derjenigen Spalte der inversen Kernmatrix zu summieren, die der Energie der Strahlung entspricht, da in diesem Falle der Vektor $\mathbf{f}(0)$ in Gl. (55) nur aus einem von Null verschiedenen Element besteht. So erhält man dann für eine Strahlung der Energiestufe n:

$$\overline{x}_n = \sum_{i=1}^n \frac{1}{\mu_i} = \sum_{i=1}^n \lambda_i.$$
(62)

Hierin steht λ_i als Abkürzung für $\frac{1}{\mu_i}$ und kann als mittlere Weglänge zwischen zwei Wechselwirkungsakten gedeutet werden.

Es ergibt sich somit das physikalisch plausible Resultat, wonach die mittlere Reichweite der Strahlung aus der Summe der sukzessiv aufeinanderfolgenden (mittleren) Abstände zwischen den einzelnen Wechselwirkungsakten zusammengesetzt ist. In der Kette der Wechselwirkungsakte erfolgt die (diskrete) Abnahme der Energie von Stufe zu Stufe, so daß am Ende des Strahlungsweges die Anfangsenergie des Teilchens vollständig aufgebraucht ist.

In [1] wurde der spezielle Fall angegeben, daß alle μ -Werte gleich sind. Selbst diese etwas weitgehende Näherung gibt den Sachverhalt in befriedigender Weise wieder. Man geht dabei von der Annahme ans. daß es ein mittleres μ gebe, das für alle bei der Transmission der Strahlung auftretenden Energien näherungsweise gilt. Auch bei LANDAU [6] wurde bereits eine Beziehung angegeben, bei der die Wechselwirkung als energieunabhängig angesehen wurde. Für gleiche Werte von μ und damit auch λ folgt aus Gl. (62)

$$\overline{x}_n = \frac{n}{\mu} = n \cdot \lambda. \tag{63}$$

Die Größe n, die in [1] als Wechselwirkungsparameter (WW-Parameter) bezeichnet wurde, gibt die Anzahl der sukzessiven Wechselwirkungsakte an.

7.8 Einige Bemerkungen zur Behandlung der Winkelstreuung mit Matrixfunktionen

Die Behandlung der Transportgleichung (9) unter Berücksichtigung der Winkelstreuung ist ein außerordentlich viel komplizierteres Problem als die in der vorliegenden Arbeit vorgenommene alleinige Behandlung der Energiestreuung. Umfassende Lösungswege – auch unter Zuhilfenahme von Matrixfunktionen – sind in dem Buch über Neutronentransporttheorie von DAVISON [6] angegeben. Wegen der andersartigen Problemstellung findet darin aber die Matrixexponentialfunktion keine Anwendung.

Es sei hier darauf hingewiesen, daß auch die Winkelstreuung durch einen zur Energiestreuung analogen Matrizenformalismus dargestellt werden kann. Der Vektor des Strahlungsflusses zu einer gegebenen (nichtvariablen) Energie besteht dann aus den Komponenten der (in beliebiger Reihenfolge angeordneten) Anteile des Raumwinkels. Die Schwierigkeiten ergeben sich vor allem bei der Beschreibung des Strahlungsweges, der im Falle der Winkelstreuung nicht mehr ohne weiteres als geradlinig angenommen werden darf. Im Extremfall können die Teilchen sogar rückgestreut werden. Hieraus resultiert eine Unbestimmtheit der Anfangsbedingungen.

Nur bei einer stark nach vorn ausgezogenen Streuindikatrix und geringer Schichtdicke kann der oben entwickelte Matrizenformalismus eine brauchbare Näherung ergeben. Somit läßt sich die Transformationseigenschaft der Matrizen insbesondere bei der Kleinwinkelstreuung vorteilhaft anwenden. Das Zusammenwirken von Winkel- und Energiestreuung führt zu keinen grundsätzlichen Komplikationen. Nach einer zweifachen Diskretisierung (bezüglich der Energie und des Raumwinkels) können beide Streuarten in Blockmatrizen miteinander kombiniert werden.

8 Zur numerischen Lösung der Transportgleichung

Aus den vorangegangenen Darlegungen ist ersichtlich, daß die numerische Behandlung der Integrodifferentialgleichung des Strahlungstransportes im allgemeinen – wenn man von einigen leicht lösbaren, meist auf groben Vereinfachungen beruhenden Spezialfallen absieht – deren Diskretisierung und damit Umwandlung in ein D'ALEMBERTsches Differentialgleichungssystem erfordert. Die Lösung des Differentialgleichungssystems ergibt eine Näherungslösung der Integrodifferentialgleichung. Da die erzielbare Genauigkeit von dem Feinheitsgrad der Diskretisierung abhängt, kommt es darauf an, Differentialgleichungssystems möglichst hoher Ordnung auszuwerten. Der hiermit verbundene Rechenaufwand kann in rationeller Weise nur noch mit modernen Hochleistungsrechenautomaten bewältigt werden.

So sei abschließend noch mitgeteilt, daß von den Verfassern Rechenprogramme zur numerischen Lösung des D'ALEMBERTschen Differentialgleichungssystems für die polnische Rechenmaschine ODRA 1204 entwickelt und erprobt worden sind.

Die Rechnung basiert auf der Reihenentwicklung der Matrix-Exponentialfunktion. Man erhält die Transformationsmatrix mit einer Genauigkeit von 10 Dezimalstellen. Mit dem gleichen Programm kann ein eingegebener Anfangsvektor wiederholt transformiert werden. Durch linksseitige Multiplikation des Spaltenvektors mit einem Zeilenvektor wird das dazugehörige Skalarprodukt gebildet. Das Programm gestattet auch das Multiplizieren und Potenzieren von Matrizen. Die Ordnung der quadratischen Matrizen ist prinzipiell beliebig; wegen der begrenzten Speicherkapazität der Rechenmaschine können aber (vorerst) nur Matrizen bis zur Ordnung 34 berechnet werden.³

 $^{^{3}}$ Anmerkung bei der Präparation des Artikels zur Einstellung in das INTERNET im Jahre 2008: In den vergangenen 40 Jahren seit der Abfassung des Manuskriptes zu dem vorliegenden Artikel hat die Rechentechnik enorme Fortschritte gamacht, welche sich vor allem auf die Rechengeschwindigkeit, die Speicherkapazität und die graphische Darstellung der Rechenergebnise beziehen, so daß die seinerzeit gegebenen Beschränkungen praktisch nicht mehr bestehen. Allerdings gilt weiterhin die gegenläufige Beziehung von Rechenzeit und Auflösung.

Der Anwendungsbereich eines derartigen Rechenprogramms geht aber wesentlich über die numerische Behandlung der Probleme des Strahlungstransportes hinaus. Als weitere Anwendungsbeispiele seien genannt: radioaktive Umwandlungsreihen, Reaktionskinetik chemischer Prozesse, Diffusions-, Strömungs- und Leitungsvorgänge.

9 Zusammenfassung

Es wird die BOLTZMANNsche Integrodifferentialgleichung für das Strahlungstransportproblem aufgestellt und spezialisiert. Mit Hilfe des Matrizenformalismus wird die Nichtkommutativität der Strahlungstransmission durch zusammengesetzte Schichten verschiedenen Materials dargestellt. Insbesondere werden einige Folgerungen aus der Matrizendarstellung der Lösung der Transportgleichung gezogen, wobei sich u.a. eine neue Definition der Reichweite der Strahlung in Medien ergibt.

Für Diskussionen zu der Problematik der vorliegenden Arbeit danken die Verfasser Herrn Dr. DOMKE (Zentralinstitut für Astrophysik der DAW, Potsdam).

Literatur

- [1] [1] Melcher. H.: Transmission und Absorption. Ein allgemeines Gesetz für ionisierende Strahlungen. VEB Deutscher Verlag der Wissenschaften, Berlin 1970.
- [2] Schmeidler, W.: Integralgleichungen mit Anwendungen in Physik und Technik. Akad. Verlagsges. Geest/Portig K.-G., Leipzig 1955, 2. Aufl.
- [3] Doetsch, G.: Anleitung zum praktischen Gebrauch der Laplace-Transformation. R. Oldenbourg Verl., München 1961, 2. Aufl.
- [4] Bharucha-Reid, A. T.: Elements of the Theory of Markov Processes and Their Applications. McGraw-Hill Book Company, Inc. New York/Toronto/London 1960.
- [5] Melcher, H.: Zur mathematischen Darstellung und physikalischen Interpretation von Transmissionskurven. Wiss. Zeitschr. P. H. Erfurt/Mühlhausen 7 (1971) Heft 2, S. 81–88.
- [6] Landau, L.: On the Energy Loss of Fast Particles by Ionisation. Journ. of Physics (UdSSR) 8 (1944) 201–205.
- [7] Davison, B.: Neutron Transport Theory. Clarendon Press, Oxford 1958.
- [8] Gerth, E.: Zur analytischen Darstellung der Schwärzungskurve II. Die Belichtungsmatrix. Z. wiss. Phot. 64 (1970) S. 127–134.

Treatment of the radiative transfer by means of matrix functions

Horst Melcher¹ and Ewald Gerth²

¹ Pedagogic College ,,Dr. Theodor Neubauer", Erfurt-Mühlhausen, GDR

² Central Institute for Astrophysics of the Academy of Sciences of the GDR,

Potsdam

Abstract

The transport equation of BOLTZMANN is formulated and solved by means of an infinite equation of matrices for the case of the stationary rectilinear propagation of radiation with respect to energy scattering only. It is shown that the matrix formalism is the proper one to explain the qualities of transformations and the non-commutativity of the radiation transmitted through compound, heterogeneous layers of material.

The resolving matrix is represented as an expansion of a matrix exponential function, yielding at once the algorithm for the numerical calculation in a computer program. The linearity of the system of differential equations offers also the solution by using the LAPLACE-transformation, which reveals the structure of the resolving matrix in comparison with the expansion of the matrix exponential function.

The matrix formalism renders a comprehensive method for analytical derivation, numerical computation, and definition of relations among different interacting physical magnitudes. Thus, using the matrix calculus, a new definition for the average length of reach of the radiative transfer through an absorbing medium could be given in form of the inverse kernel matrix of the transport equation.

Publication

WISSENSCHAFTLICHE ZEITSCHRIFT DER PÄDAGOGISCHEN HOCHSCHULE "DR. THEODOR NEUBAUER" ERFURT-MÜHLHAUSEN Mathematisch-Naturwissenschaftliche Reihe, 9. Jahrgang 1972, Heft 1, Nr. 145, S. 3–10 Eingegangen am 25. 11. 1970 SCIENTIFIC JOURNAL OF THE PEDAGOGIC COLLEGE "DR. THEODOR NEUBAUER" ERFURT-MÜHLHAUSEN Mathematisch scientific row. 8. Voor 1972, Volume 1, No. 145, p. 3–10

Mathematical-scientific row, 8. Year 1972, Volume 1, No. 145, p. 3–10 Received 1970, November 25^{th}

Article available in German by the web-address: www.ewald-gerth.de/39.pdf

Lösung des stationären Strahlungstransportproblems für Energiestreuung mit Hilfe von Matrizenfunktionen

H. Melcher, E. Gerth

Pädagogische Hochschule Dr. Theodor Neubauer, Sektion Mathematik/Physik. Erfurt.¹ und Akademie der Wissenschaften der DDR, Zentralinstitut für Astrophysik²

Die Transportgleichung für den Fall einer stationären, geradlinigen Strahlungsausbreitung mit reiner Energiestreuung wird als unendliche Matrizengleichung formuliert und gelöst. Mit Hilfe des Matrizenformalismus werden der Transformationscharakter und die Nichtkommutativität der Transmission der Strahlung durch zusammengesetzte, heterogene Materieschichten erklärt sowie eine übersichtliche analytische Darstellung der Transmission divergierender Strahlenbündel gegeben. Des weiteren werden einfache Beziehungen für den Strahlungsfluß, die mittlere Reichweite und die Zählrate aufgestellt.³

Keywords:

absorption energy interactions matrices Boltzmann equation energy range mathematical methods radiations scattering

Die Boltzmannsche Integrodifferentialgleichung des Strahlungstransportes erwies sich bisher nur für eine Reihe von Spezialfällen, bei denen bestimmte Vereinfachungen und Näherungen vorgenommen wurden, als lösbar $[1 \cdot \cdot 9]$. Nachfolgend wird gezeigt, daß im Falle der Transmission von Strahlung durch absorbierende Materieschichten bei alleiniger Energiestreuung (unter Vernachlässigung der räumlichen Winkelstreuung) eine einfache analytische Lösung des Problems möglich ist, die durch Einführung von Matrizenfunktionen in eine übersichtliche und für weitere Deduktionen geeignete Form gebracht werden kann.

1 Darstellung der Strahlungstransmission durch Integraltransformationen

Die Strahlungstransportgleichung für einen kräfte- und quellenfreien, homogenen, stationären Strahlungsfluß, der eine homogene Materieschicht ohne Winkelstreuung durchsetzt, lautet $[8 \cdots 10]$

$$\frac{\partial \varphi(E',x)}{\partial x} = -\varphi(E',x) \int_{0}^{E'} N\sigma^*(E,E') \, \mathrm{d}E + \int_{E'}^{\infty} N\sigma^*(E,E') \, \varphi(E,x) \, \mathrm{d}E.$$
(1)

¹Anschrift: DDR 501 Erfurt, Nordhäuser Straße 63.

²Anschrift: DDR 15 Potsdam, Telegrafenberg.

³Abstract: www.ewald-gerth.de/42abs.pdf - attached at the end of this article (page 55).

⁴³

Die in Gleichung (1) enthaltenen Größen bedeuten: E die Energie vor und E' die Energie nach dem Streuakt, x die Koordinate in der Ausbreitungsrichtung der Strahlung. N die Anzahl der Atome in der Volumeneinheit der durchstrahlten Materie, $\varphi(E)$ die energetische Strahlungsflußverteilung und $d\sigma(E', E) = \sigma * (E', E)dE$ der differentielle Wirkungsquerschnitt für den energetischen Übergang $E \to E'$.

Bei dem betrachteten physikalischen Problem erfolgen nur Energieänderungen von höheren zu niedrigeren Energiezuständen der Strahlungspartikeln, so daß $\sigma^*(E', E) = 0$ für $E \leq E'$ ist. Mit Hilfe der DIRACschen Deltafunktion $\delta(E', E)$ für zwei unabhängige Variable und der den Übergang nach niedrigeren Energien als E' kennzeichnenden Integrationsvariablen E'' lassen sich die beiden Summanden auf der rechten Seite von Gleichung (1) zu dem Kern

$$K(E', E) = -\delta(E', E) \int_{0}^{E'} N\sigma^{*}(E'', E') \, \mathrm{d}E'' + N\sigma^{*}(E', E)$$
(2)

der homogenen Integrodifferentialgleichung

$$\frac{\partial}{\partial x} \varphi(E', x) = \int_{0}^{\infty} K(E', E) \varphi(E, x) dE$$
(3)

zusammenfassen, die durch Integration unter Hinzufügen der Anfangsverteilung des Strahlungsflusses $\varphi(E,0)$ als Integrationskonstante in die äquivalente Integralgleichung

$$\varphi(E',x) = \varphi(E',0) + \int_{0}^{x} \int_{0}^{\infty} K(E',E) \ \varphi(E,\xi) \ \mathrm{d}E \ \mathrm{d}\xi \tag{4}$$

übergeht. Gleichung (4) ist eine zweidimensionale, lineare Integralgleichung zweiter Art, die bezüglich der Variablen x vom VOLTERRASchen Typ und bezüglich der Variablen E vom FREDHOLMschen Typ ist. Die Lösung dieser Integralgleichung läßt sich mit Hilfe der Resolvente $\Gamma(E', E, x)$ durch die Gleichung [11, 12]

$$\varphi(E', x) = \varphi(E', 0) + \int_{0}^{\infty} \Gamma(E', E, x) \ \varphi(E, 0) \ \mathrm{d}E$$
(5)

ausdrücken, die nach Zusammenfassung der Resolvente mit der Deltafunktion zu einer GREENschen Funktion

$$T(E', E, x) = \delta(E', E) + \Gamma(E', E, x)$$
(6)

als Integraltransformation

$$\varphi(E', x) = \int_{0}^{\infty} T(E', E, x) \ \varphi(E, 0) \ \mathrm{d}E \tag{7}$$

dargestellt werden kann.

Die Integraltransformation liefert somit einen einfachen Zusammenhang zwischen den energetischen Strahlungsflußverteilungen vor und nach der Transmission durch eine homogene Materieschicht. Bei komplizierteren Transmissionsproblemen, beispielsweise bereits bei Mehrfachtransmissionen, erweist sich jedoch die Integraltransformation als ein schwerfälliger mathematischer Formalismus [10]. Der (reversible) Ersatz der Integraltransformationen durch Matrizentransformationen ermöglicht eine wesentliche Vereinfachung der analytischen Symbolik, wodurch gleichzeitig auch neue Einsichten in die physikalischen Zusammenhänge gewonnen werden.

2 Darstellung der Strahlungstransmission durch Matrizentransformationen

Eine Integralgleichung kann als ein unendliches System linearer Gleichungen aufgefaßt werden [11]. Die Koeffizientenmatrix des linearen Gleichungssystems entspricht der Kernfunktion, und der Vektor der unabhängigen Variablen entspricht der gesuchten Funktion der Integralgleichung.

Mit den Ersetzungen durch unendliche Matrizen und Vektoren,

$$K(E', E) \stackrel{\wedge}{=} \mathbf{K}, \ \varphi(E) \stackrel{\wedge}{=} \mathbf{f},$$
(8)

läßt sich die Integrodifferentialgleichung (3) als homogene Matrizendifferentialgleichung

$$\frac{\mathrm{d}}{\mathrm{d}x}\mathbf{f}(x) = \mathbf{K}\mathbf{f}(x) \tag{9}$$

schreiben, die nach der Integration mit dem Anfangsvektor $\mathbf{f}(0)$ in die äquivalente VOLTERRASche Integralgleichung

$$\mathbf{f}(x) = \mathbf{f}(0) + \int_{0}^{x} \mathbf{K} \mathbf{f}(\xi) \, \mathrm{d}\xi$$
(10)

übergeht.

In dieser Schreibweise ist die Energie
abhängigkeit durch die Matrixstruktur festgelegt, so daß nur noch die Abhängigkeit von der Ortsvariable
nxgekennzeichnet zu werden braucht.

Die Integralgleichung (10) mit entarteter (konstanter) Kernmatrix läßt sich durch Iteration lösen, indem man die NEUMANNSche Reihe entwickelt. Man erhält dann für die Strahlungstransmission durch eine homogene Schicht die Matrix-Transformationsgleichung

$$\mathbf{f}(x) = \mathbf{T}(x)\mathbf{f}(0) \tag{11}$$

und in einer Reihenentwicklung mit der Einheitsmatrix 1 die Transformationsmatrix ("Transmissionsmatrix") als Resolvente

$$\mathbf{T}(x) = \mathbf{1} + \mathbf{K}x + \frac{1}{2!}\mathbf{K}^2 x^2 + \dots = \sum_{i=0}^{\infty} \frac{1}{i!}\mathbf{K}^i x^i,$$
(12)

die in Form der Matrix-Exponentialfunktion (vgl. [17])

$$\mathbf{T}(x) = \mathbf{e}^{\mathbf{K}x} \tag{13}$$

geschrieben werden kann.

3 Verallgemeinerung des Lenardschen Transmissionsgesetzes

Von LENARD [13] wurde für die Transmission monoenergetischer Strahlung durch eine Materieschicht der Dicke x ein durch den linearen Schwächungskoeffizienten μ bestimmtes, exponentielles Schwächungsgesetz des Strahlungsflusses Φ gefordert,

$$\Phi(x) = e^{-\mu x} \Phi(0). \tag{14}$$

Die insbesondere bei Elektronenstrahlen auftretenden Abweichungen von diesem Gesetz wurden auf die Abnahme der Geschwindigkeit der Teilchen beim Eindringen in die Schicht zurückgeführt. Viele Versuche wurden unternommen, um im Falle der Elektronenstrahlen das Exponentialgesetz durch Korrektionen u. ä. doch noch zu "retten".

In der Matrizenschreibweise ergibt sich nach Gleichung (11) und (13) ein Exponentialgesetz:

$$\mathbf{f}(x) = \mathbf{e}^{\mathbf{K}x} \ \mathbf{f}(0) \tag{15}$$

das formal dem LENARDschen Transmissionsgesetz Gleichung (14) entspricht, aber darüber hinaus allgemein für ein ganzes Energiespektrum gilt.

4 Die Diskretisierung der Strahlungstransportgleichung

Für praktische Berechnungen der Strahlungstransmission sind die durch Gleichung (8a, 6) definierten Umwandlungen der Kernfunktion in eine unendliche quadratische Matrix und der energetischen Strahlungsflußverteilung in einen unendlichen Vektor undurchführbar. Um zu konkreten Werten übergehen zu können, muß man die Ordnung der Matrix und die Anzahl der Komponenten des Vektors auf eine endliche Größe n beschränken. Dies wird durch die Begrenzung des Definitionsbereiches der Funktionen K(E', E) und $\varphi(E)$ sowie durch die Diskretisierung erreicht, indem für die Folgen der Energieintervalle Integrale der Funktionswerte gebildet werden. Der Strahlungsfluß für das Energieintervall ΔE_i ist

$$\Delta \Phi_i = \int_{E_{i-1}}^{E_i} \varphi(E) \, \mathrm{d}E = f_i, \tag{16}$$

wobei f_i die *i*-te Komponente des Strahlungsflußvektors bezeichnet. Mit den Integralen über die einzelnen Felder der schachbrettartig aufgeteilten Kernfunktion

$$K_{ik} = \frac{1}{\Delta E_i} \int_{E_{i-1}}^{E_i} \int_{E_0}^{E_i} N\sigma^*(E, E') dE dE' \qquad \text{für} \qquad i = k$$

$$K_{ik} = \frac{1}{\Delta E_k} \int_{E_{i-1}}^{E_i} \int_{E_{k-1}}^{E_k} N\sigma^*(E', E) dE' dE \qquad \text{für} \qquad i < k$$

$$K_{ik} = 0 \qquad \qquad \text{für} \qquad i > k$$
(17)

ergibt sich aus Gleichung (1) die i-te Gleichung eines D'ALEMBERTschen Differentialgleichungssystems als Näherung

$$\frac{\mathrm{d}}{\mathrm{d}x}f_i(x) = \sum_{k=1}^n K_{ik}f_k(x).$$
(18)

Gleichung (18) läßt sich mit der Matrix $\mathbf{K} = (K_{ik})$ und dem Vektor $\mathbf{f} = (f_i)$ durch Gleichung (9) ausdrücken.

Mit der Diskretisierung ist ein Verlust an Genauigkeit verbunden. Bei praktischen Rechnungen ist ein Kompromiß zwischen dem Feinheitsgrad der Diskretisierung und dem Rechenaufwand zu schließen.

5 Zur analytischen Lösung des d'Alembertschen Systems

Von den bekannten Methoden zur Lösung der durch die Diskretisierung erhaltenen Matrizendifferentialgleichungen endlicher Ordnung kommen für eine rationelle analytische und die darauf aufbauende numerische Behandlung nur solche Methoden in Betracht, die eine unmittelbare Lösung des Anfangswertproblems gestatten. Dies trifft für Gleichung (15) zu.

Bei einem weiteren Lösungsverfahren wird von der LAPLACE-Transformation Gebrauch gemacht. Die LAPLACE-Transformierte der Matrix-Exponentialfunktion Gleichung (13) folgt aus der Beziehung

$$\mathbf{T}(s) = \int_{0}^{\infty} e^{-\mathbf{1}sx} e^{-\mathbf{K}x} \, \mathrm{d}x = (\mathbf{1}s - \mathbf{K})^{-1}$$
(19)

mit s als der unabhängigen komplexen Variablen im Bildraum der Transformation.

Als ein günstiger Umstand erweist es sich im Falle der Strahlungstransmission, daß wegen der einseitig gerichteten Energiestreuung $E \to E'$ alle auftretenden Matrizen Dreiecksmatrizen sind, so daß sich das Eigenwertspektrum unmittelbar aus den Hauptdiagonalelementen der Kernmatrix entnehmen läßt.

Für viele analytische Operationen mit den Transformationsmatrizen sind Folgerungen aus einem Lösungsverfahren wichtig, bei dem eine Diagonalisierung der quadratischen Matrizen durch Ähnlichkeitstransformationen durchgeführt wird [15, 16]. So erhält man aus der Koeffizientenmatrix **K** eine Diagonalmatrix **D** durch die Ähnlichkeitstransformation mit der quadratischen Matrix **U**,

$$\mathbf{D} = \mathbf{U}^{-1} \mathbf{K} \mathbf{U},\tag{20}$$

wobei die Spalten der Matrix **U** ein Fundamentalsystem linear unabhängiger Eigenvektoren \mathbf{u}_i zu den Eigenwerten s_i bilden. Eine entsprechende Beziehung gilt auch für die Resolventenmatrix,

$$\mathbf{e}^{\mathbf{D}x} = \mathbf{U}^{-1} \mathbf{e}^{\mathbf{K}x} \mathbf{U}.$$
 (21)

Aus den Gleichungen (20) und (21) folgt, daß die Koeffizientenmatrix \mathbf{K} , die Resolventenmatrix $e^{\mathbf{K}x}$ und ihre reziproken Matrizen sowie alle weiteren durch lineare

Operationen daraus hervorgehenden Matrizen wegen der Kommutativität der Diagonalmatrizen miteinander kommutativ sind. So erhält man beispielsweise

$$\mathbf{K}\mathbf{e}^{\mathbf{K}x} = \mathbf{U}\mathbf{D}\mathbf{U}^{-1}\mathbf{U}\mathbf{e}^{\mathbf{D}x}\mathbf{U}^{-1} = \mathbf{e}^{\mathbf{K}x}\mathbf{K}.$$
(22)

6 Einige Folgerungen aus der Matrizendarstellung der Transportgleichung

6.1 Der Transformationscharakter der mit Energiestreuung verbundenen Strahlungstransmission

Die Transmission der Strahlung wird nach Gleichung (11) und (15) durch eine lineare Transformation des Vektors der energetischen Strahlungsfluß verteilung beschrieben. Die Transformation kann von beliebigen Anfangsverteilungen ausgehen. Dies ist z. B. gerade bei der Untersuchung der Spektren der β -Strahlung von besonderer Bedeutung, da diese von vornherein eine breit aufgefächerte energetische Verteilung aufweisen.

Mehrfachtransmissionen lassen sich als Transformation des Anfangsvektors mit dem resultierenden Produkt \mathbf{T}_{res} der einzelnen Transformationsmatrizen \mathbf{T}_i beschreiben, n

$$\mathbf{T}_{res}\left(\sum_{i=1}^{n} x_i\right) = \mathbf{T}_n(x_n)\cdots\mathbf{T}_2(x_2)\mathbf{T}_1(x_1).$$
(23)

Für eine inhomogene Schicht, bei der $\mathbf{K}(x)$ eine Funktion des geradlinigen Transmissionsweges x ist, kann man die resultierende Transformationsmatrix durch das VOLTERRASche Produktintegral [15] angeben:

$$\mathbf{T}(x) = \int_{0}^{x} [\mathbf{1} + \mathbf{K}(\xi) \, \mathrm{d}\xi] = \int_{0}^{x} \mathrm{e}^{\mathbf{K}(\xi) \, \mathrm{d}\xi}.$$
 (24)

Die Transformation ist umkehrbar. Durch Transformation eines Ergebnisvektors f(x) mit der reziproken Transformationsmatrix

$$\mathbf{T}^{-1}(x) = \mathbf{T}(-x) \tag{25}$$

erhält man den Anfangsvektor $\mathbf{f}(0)$.

6.2 Die Nichtkommutativität der Transmission bei heterogenen Mehrfachschichten

Die Nichtkommutativität der Transmission von Strahlungen durch hintereinander angeordnete Schichten verschiedenen Materials kann mit Hilfe von Matrizen besonders einfach dargestellt werden. Für zwei Schichten mit den zugeordneten Kernmatrizen \mathbf{K}_1 und \mathbf{K}_2 sowie den Dicken x_1 und x_2 ist die Vertauschungsrelation im allgemeinen nicht erfüllt:

$$\mathbf{T}_{2}(x_{2})\mathbf{T}_{1}(x_{1}) - \mathbf{T}_{1}(x_{1})\mathbf{T}_{2}(x_{2}) \neq \mathbf{0}.$$
 (26)

Die Kommutativität der Transformationsmatrizen setzt die Kommutativität der Kernmatrizen voraus, was unmittelbar aus der Anwendung von Gleichung (20) und (21) auf Gleichung (26) folgt.

Im Grenzfall sehr dünner Schichten wird die Nichtkommutativität aufgehoben. Die Transformationsmatrix $\mathbf{T}(\Delta x)$ läßt sich dann näherungsweise durch die nach dem zweiten Gliede abgebrochene Reihe Gleichung (12)

$$\mathbf{T}(\Delta x) \approx \mathbf{1} + \mathbf{K} \Delta x \tag{27}$$

darstellen. Somit gilt für zwei dünne Schichten der Dicke Δx_1 und Δx_2 unter Vernachlässigung der Glieder höherer Ordnung

$$\mathbf{T}_2(\Delta x_2)\mathbf{T}_1(\Delta x_1) \approx \mathbf{1} + \mathbf{K}_1 \Delta x_1 + \mathbf{K}_2 \Delta x_2.$$
(28)

Bei einem homogen gemischten Medium heterogener Anteile η_1 und η_2 an der Gesamtschicht der Dicke x ergibt sich im infinitesimalen Grenzfall für die resultierende Kernmatrix 1

$$\mathbf{K}_{res} = \eta_1 \mathbf{K}_1 + \eta_2 \mathbf{K}_2, \tag{29}$$

was gleichbedeutend mit der Aussage ist, daß es bei der energetischen Streuung in der Schicht verschiedene Möglichkeiten gibt, die als eine Entweder-Oder-Wahrscheinlichkeit bereits bei der Formulierung der Transportgleichung (1) in Gestalt der Summe der zu den Bestandteilen des Streumediums zugeordneten Wirkungsquerschnitte berücksichtigt werden kann.

6.3 Zählrate und energieabhängige Nachweiswahrscheinlichkeit

Die Zählrate wird durch den Anteil des Strahlungsflusses bestimmt, der im empfindlichen Volumen eines Strahlungsdetektors auf Grund von Wechselwirkungen nachgewiesen wird. Die energieabhängige Nachweiswahrscheinlichkeit wird in der Matrizenschreibweise durch einen Zeilenvektor wausgedrückt. Die Zählrate z ist dann das Skalarprodukt des Zeilenvektors \mathbf{w} mit dem Spaltenvektor \mathbf{f} der Strahlungsflußverteilung: $z = \mathbf{w} \mathbf{f}.$ (30)

Nach der Transmission der Strahlung durch eine Schicht gilt für die Zählrate mit Gleichung (11)

$$z(x) = \mathbf{w} \mathbf{T}(x) \mathbf{f}(0). \tag{31}$$

6.4Der transmittierte Strahlungsfluß

Der gesamte Strahlungsfluß CP ergibt sich durch Summation aller seiner Bestandteile. Zu diesem Zweck wird anstelle des Zeilenvektors \mathbf{w} ein Einsvektor \mathbf{e} , der für jeden Energiewert die Nachweiswahrscheinlichkeit 1 besitzt, eingeführt. Entsprechend Gleichung (30) ist dann der Strahlungsfluß gegeben durch

$$\Phi = \mathbf{e} \, \mathbf{f} \tag{32}$$

und nach der Transmission durch

$$\Phi(x) = \mathbf{e} \,\mathbf{T}(x) \,\mathbf{f}(0). \tag{33}$$

6.5 Definition einer mittleren Reichweite

Im Gegensatz zu den bisher üblichen Definitionen der Reichweite einer Strahlung [14], die von mehr oder weniger künstlichen Konstruktionen an empirischen Transmissionskurven ausgehen, wird hier eine Reichweitedefinition eingeführt, der der Mittelwertsatz der Integralrechnung zugrunde liegt:

$$\overline{x} = \frac{1}{\Phi(0)} \int_{0}^{\infty} \Phi(x) \, \mathrm{d}x. \tag{34}$$

Durch Einführung von Gleichung (32) und (33) erhält man hieraus mit Gleichung (13) ∞ T = 1000

$$\overline{x} = \frac{\mathbf{e}}{\mathbf{e}\mathbf{f}(0)} \frac{1}{\Phi(0)} \int_{0}^{0} \mathbf{T} \, \mathrm{d}x \, \mathbf{f}(0) = \frac{\mathbf{e}\mathbf{K}^{-1}\mathbf{f}(0)}{\mathbf{e}\mathbf{f}(0)}.$$
(35)

Die über eine unendliche dicke, homogene Schicht erstreckte Integration der Matrixfunktion $\mathbf{T}(x) = \mathbf{e}^{\mathbf{K}x}$ ergibt die negative reziproke Kernmatrix:

$$\int_{0}^{\infty} \mathbf{T} \, \mathrm{d}x = -\mathbf{K}^{-1}.$$
(36)

die bei einem diskretisierten Problem stets gebildet werden kann. Bei einem nichtdiskreten Problem hängt die Invertierbarkeit von der Art der Kernfunktion ab [11].

Für ein in [14] angegebenes Reaktionssystem, bei dem die Reihe der diskretisierten Energiezustände in einer Markowschen Kette durchlaufen wird, was einem sukzessiven Energieverlust von Stufe zu Stufe entspricht, lautet die Kernmatrix

$$\mathbf{K} = \begin{pmatrix} -\mu_1 & \mu_2 & 0 & \dots & 0 \\ 0 & -\mu_2 & \mu_3 & \dots & 0 \\ 0 & 0 & -\mu_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -\mu_n \end{pmatrix}.$$
 (37)

Hieraus ergibt sich die reziproke Kernmatrix zu

$$\mathbf{K}^{-1} = \begin{pmatrix} -\frac{1}{\mu_1} & -\frac{1}{\mu_1} & -\frac{1}{\mu_1} & \dots & -\frac{1}{\mu_1} \\ 0 & -\frac{1}{\mu_2} & -\frac{1}{\mu_2} & \dots & -\frac{1}{\mu_2} \\ 0 & 0 & -\frac{1}{\mu_3} & \dots & -\frac{1}{\mu_3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -\frac{1}{\mu_n} \end{pmatrix}.$$
(38)

Zur Berechnung der mittleren Reichweite \overline{x}_k einer monoenergetischen Strahlung des Energieindex k ist in Gleichung (35) ein Vektor $\mathbf{f}(0)$ einzusetzen, der aus nur einem von Null verschiedenen Element $f_k(O)$ besteht. Hierdurch wird bei der Multiplikation aus der Matrix $\mathbf{K}^{-1} = \mathbf{R}$ die k-te Spalte herausgegriffen, deren Elemente R_{ik} bei der Multiplikation mit dem Zeilenvektor \mathbf{e} summiert werden:

$$\overline{x} = -\sum_{i=1}^{n} R_{ik}.$$
(39)

Im Falle der Gültigkeit von Gleichung (38) ergibt sich die mittlere Reichweite einer Strahlung der Energiestufe n – mit $\lambda_i = \frac{1}{\mu_i}$ als mittlere Weglänge zwischen zwei Wechselwirkungsakten – zu

$$\overline{x} = \sum_{i=1}^{n} \frac{1}{\mu_{i}} = \sum_{i=1}^{n} \lambda_{i}.$$
(40)

Unter der Näherungsannahme [14, 8], daß p als energieunabhängig angesehen werden kann, folgt für gleiche Werte von n aus Gleichung (40)

$$\overline{x} = \frac{n}{\mu} = n\lambda. \tag{41}$$

Die Größe n, die in [14] als Wechselwirkungsparameter (WW-Parameter) bezeichnet wurde, gibt die Anzahl der mit Energieverlust verbundenen sukzessiven Wechselwirkungsakte eines Teilchens auf seinem Transmissionswege an.

6.6 Transmission von divergierenden Strahlenbündeln

Alle bisherigen Betrachtungen beziehen sich auf die geradlinige Durchstrahlung durch einen individuellen Strahl. Hieraus folgt, daß die Ergebnisse der Transmission des geradlinigen Strahlungsflusses auch für die Strahlungsflußdichte b eines parallelen Strahlenbündels gelten.

Abb. 1. Planparallele Schicht der Dicke x im Abstand h von einer punktförmigen Quelle

Im Falle einer punktförmigen Strahlungsquelle mit dem energetisch bezogenen Vektor der Aktivität $\mathbf{a} \stackrel{c}{=} a(E)$ ist der auf einer kreisförmigen Scheibe vom Radius R unmittelbar hinter einer im Abstand h von der Quelle befindlichen planparallelen Schicht der Dicke x (Abb. 1) auftreffende Strahlungsfluß in seiner energetischen Verteilung $\mathbf{f} \stackrel{c}{=} \varphi(E)$ gegeben durch die Beziehung (vgl. [18])

$$\mathbf{f} = \frac{1}{2} \int_{0}^{R} \frac{r \mathbf{e}^{\mathbf{K}xu} \mathbf{a}}{(x+h)^2 u^3} \, \mathrm{d}r \tag{42}$$

 mit

$$u = \sqrt{1 + \left(\frac{r}{x+h}\right)^2}.$$
(43)

Die Substitution von Gleichung (43) liefert das Integral mit u = U für r = R:

$$\mathbf{f} = \frac{1}{2} \int_{1}^{U} \frac{\mathbf{e}^{\mathbf{K}xu} \mathbf{a}}{u^2} \, \mathrm{d}u = \frac{1}{2} \left[-\frac{\mathbf{e}^{\mathbf{K}xu}}{u} + \mathbf{K}x \operatorname{Ei}(\mathbf{K}xu) \right]_{1}^{U} \mathbf{a}.$$
(44)

Definiert durch man eine Matrix-Exponentialintegralfunktion durch

$$\operatorname{Ei}(\mathbf{K}x) = -\int_{x}^{\infty} \frac{\mathbf{e}^{\mathbf{K}\xi}}{\xi} \,\mathrm{d}\xi \tag{45}$$

und eine Matrix-KING-Funktion durch

$$\Psi(\mathbf{K}x) = \mathbf{e}^{\mathbf{K}x} - \mathbf{K}x \operatorname{Ei}(\mathbf{K}x), \tag{46}$$

so erhält man den Strahlungsfluß des divergierenden Bündels hinter der Schicht in seiner energetischen Verteilung durch die Beziehung

$$\mathbf{f} = \frac{1}{2} \Big[\Psi(\mathbf{K}x) - \frac{1}{U} \Psi(\mathbf{K}Ux) \Big] \mathbf{a}.$$
(47)

6.7 Selbstabsorption

Zur Berechnung der Strahlung beim geradlinigen Austritt aus einer radioaktiven, selbstabsorbierenden, homogenen Schicht der spezifischen Aktivität **q** hat man die Strahlungsanteile aus allen Schichttiefen zu integrieren und erhält dann für die Strahlungsflußdichte $\mathbf{b} \widehat{=} b(E)$

$$\mathbf{b}(x) = \int_{0}^{x} \mathbf{e}^{\mathbf{K}\xi} \mathbf{q} \, \mathrm{d}\xi = -\mathbf{K}^{-1} (\mathbf{1} - \mathbf{e}^{\mathbf{K}x}) \mathbf{q}. \tag{48}$$

Der Sättigungswert für $x \to \infty$ ist durch

$$\mathbf{b}_s = -\mathbf{K}^{-1}\mathbf{q} \tag{49}$$

gegeben, und wegen der Kommutativitätseigenschaft von \mathbf{K}^{-1} und $\mathbf{e}^{\mathbf{K}x}$ gilt entsprechend Gleichung (22)

$$\mathbf{b}(x) = (\mathbf{1} - \mathbf{e}^{\mathbf{K}x})\mathbf{b}_s.$$
(50)

Zu dem gleichen Ergebnis gelangt man, wenn man in der homogenen Transportgleichung Gleichung (9) einen additiven Quellenterm \mathbf{q} hinzufügt und die inhomogene Matrizendifferentialgleichung durch Variation der Konstanten löst.

Berücksichtigt man bei der Berechnung der Strahlung einer planparallelen Schicht unendlicher Ausdehnung alle vorkommenden Strahlrichtungen, so gilt in entsprechender Weise wie im Abschnitt 6.6 für die Intensität der Strahlung zu beiden Seiten der Schicht die Beziehung

$$\mathbf{b}(x) = -\left(\mathbf{1} - \mathbf{e}^{\mathbf{K}x} - \mathbf{K}x\Psi(\mathbf{K}x)\right)\frac{\mathbf{K}^{-1}\mathbf{q}}{4}.$$
 (51)

Hierin ist

$$\mathbf{b}_s = -\frac{\mathbf{K}^{-1}\mathbf{q}}{4} \tag{52}$$

der Sättigungswert für $x \to \infty.$ Andererseits gilt für die spezifische Aktivität

$$\mathbf{q} = -4\mathbf{K}\mathbf{b}_s.\tag{53}$$

Gleichung (53) erlaubt die Bestimmung der spezifischen Aktivität in ihrer energetischen Zusammensetzung an Schichten von Sättigungsdicke durch Messung der aus der Schicht heraustretenden Strahlung.

Wegen der eingangs behandelten Äquivalenz der Matrizen zu den Integraltransformationen kann Gleichung (53) auch in der Form

$$q(E) = -4 \int_{0}^{\infty} K(E, E') b_s(E') \, \mathrm{d}E'$$
(54)

geschrieben werden. Die Vorteile der Matrizenschreibweise zeigen sich besonders bei der analytischen Herleitung komplizierterer Beziehungen wie Gleichung (47) und Gleichung (51). Die Ergebnisse lassen sich dann unter Benutzung der Reversibilitätsbeziehung zwischen den Integraltransformationen und den Matrizentransformationen in einfacher Weise entsprechend dem Übergang von Gleichung (53) zu Gleichung (54) umformen.

7 Zur numerischen Lösung der Transportgleichung

Die auf der Diskretisierung beruhende numerische Lösung der Transportgleichung stellt eine Näherung dar. Zur Erzielung einer hohen Genauigkeit der Lösung sind lineare Differentialgleichungssysteme möglichst hoher Ordnung auszuwerten. Der hiermit verbundene Rechenaufwand kann in rationeller Weise nur noch mit modernen Hochleistungs-Rechenautomaten bewältigt werden (vgl. [19]).

Von den Verfassern wurden Rechenprogramme zur Lösung des D'ALEMBERTschen Differentialgleichungssystems entwickelt, die auf der Reihenentwicklung der Matrix-Exponential-funktion beruhen. Das Speichervermögen der Rechenmaschine (ODRA 1204) reicht für Matrizenordnungen bis 31 aus⁴.

⁴Anmerkung bei der Textbearbeitung des vorliegenden Artikels im Jahre 2008:

Die Angabe der Leistungsfähigkeit des Rechners ODRA 1204 bezieht sich auf den damaligen Stand der Rechentechnik - also etwa von 1970. In der nachfolgenden Zeit nahm die Computertechnk einen enormen Aufschwung, welcher u. a. die Organisation der Datenverarbeitung, die Speicherkapazität, die Rechengeschwindigkeit und die graphische Darstellung betrifft. Somit entfällt die hier angegebene Begrenzung der Matrix auf den Rang 31. Allerdings gilt weiterhin, daß Auflösungsvermögen und Rechengeschwindigkeit in einem quadratischen Reziprozitätsverhältnis stehen.

⁵³

Für Diskussionen zu der Problematik der vorliegenden Arbeit danken die Verfasser Herrn Dr. H. Domke (Zentralinstitut für Astrophysik, Potsdam).

Herrn Prof. Dr. J. Picht in großer Verehrung zum 75. Geburtstag gewidmet.

Eingegangen am 15. 5. 1972

Literatur

- [1] B. Davison, Neutron Transport Theory, Oxford 1958.
- [2] S. Chandrasekhar, Radiative Transfer, New York 1960.
- [3] K. M. Case, P. F. Zweifel, Linear Transport Theory, Reading/Mass. 1967.
- [4] K. Inönü, P. F. Zweifel, Developments in Transport Theory, London-New York 1967.
- [5] V. Kourganoff, Basic Methods in Transfer Problems, New York 1963.
- [6] H.-D. Freund, Atomkernenergie **15** (1970), S. 115.
- [7] K.-D. Leuthäuser, Atomkernenergie 18 (1971), S. 11.
- [8] D. Harder, Durchgang schneller Elektronen durch dicke Materieschichten, Habil.-Schrift Würzburg 1965.
- [9] W. Heisenberg, Vorträge über kosmische Strahlung, Berlin-Göttingen-Heidelberg 1953.
- [10] H. Melcher, K. Gerth, Behandlung von Strahlungstransportproblemen mit Matrizenfunktionen, Wiss. Z. Pädagog. Hochsch. Erfurt 8 (1972,) S. 3.
- [11] W. Schmeidler, Integralgleichungen mit Anwendungen in Physik und Technik, 1: Lineare Integralgleichungen, 2. Aufl., Leipzig 1955.
- [12] S. O. Michlin, Vorlesungen, über lineare Integralgleichungen, Berlin 1962.
- [13] P. Lenard, Quantitatives über Kathodenstrahlen aller Geschwindigkeiten, Heidelberg 1925.
- [14] H. Melcher, Transmission und Absorption, Ein allgemeines Gesetz f
 ür ionisierende Strahlungen. VEB Deutscher Verlag der Wissenschaften, Berlin 1970.
- [15] F. R. Gantmacher, Matrizenrechnung, Teil 2: Spezielle Fragen und Anwendungen, Berlin 1959.
- [16] R. Bellman, Introduction to Matrix Analysis, New York-Toronto-London. 1960.
- [17] O. W. Collins, A. D. Code, Some Numerical Methods for the Solution of the Equation of Transfer, Astrophys. J. 142 (1965), S. 1576.
- [18] W. Gorschkow, Gammastrahlung radioaktiver Körper, Leipzig 1960.
- [19] G. I. Marčuk, V. I. Lebedev, Čislennye metody v teorii perenosa nejtronov (Numerische Methoden in der Neutronentransporttheorie), Moskau 1971.

Solution

of the stationary radiation transport problem for energy scattering using matrix functions

Horst Melcher¹ and Ewald Gerth²

² Central Institute for Astrophysics of the Academy of Sciences of the GDR, Potsdam

Abstract

The transport equation of Boltzmann is formulated and solved by means of an infinite equation of matrices for the case of the stationary rectilinear propagation of radiation with respect to energy scattering only. It is shown that the matrix formalism is the proper one to explain the qualities of transformations and the non-commutativity of the radiation transmitted through compound, heterogeneous layers of material. Furthermore, an analytical and perspicuous representation of the transmission of divergent beams is given. Finally, simple equations for the flux of radiation, the mean range, and the counting rate are set up.

Publication

Kernenergie, V. 16, No. 2, pp. 47-52, German

Article available in German by the web-address: www.ewald-gerth.de/42.pdf

¹ Pedagogic College ,,Dr. Theodor Neubauer", Erfurt-Mühlhausen, GDR

WISSENSCHAFTLICHE ZEITSCHRIFT DER PÄDAGOGISCHEN HOCHSCHULE "DR. THEODOR NEUBAUER" ERFURT - MÜHLHAUSEN

Mathematisch-Naturwissenschaftliche Reihe. 11. Jahrgang 1975, Heft 2, S. 67-71 Als Manuskript gedruckt

AUS DER SEKTION MATHEMATIK/PHYSIK DER PÄDAGOGISCHEN HOCHSCHULE "DR. THEODOR NEUBAUER" ERFURT - MÜHLHAUSEN Sektionsdirektor Prof. Dr. sc. phil. Hans-Dieter Pöltz

Darstellung von Schwingungsvorgängen als Transformationsproblem von Matrixfunktionen¹

Von Horst Melcher und Ewald Gerth

Eingegangen am 10. 5. 1975

Prof. Dr. habil. Johannes Thomas (19. 7. 1925 - 7.8. 1970) zum Gedenken.

0. Einleitung

Schwingungen physikalischer Größen lassen sich bekanntermaßen als Lösung einer linearen Differentialgleichung 2. Ordnung darstellen. In der konventionellen Form dieser Lösung ist nicht ohne weiteres erkennbar, daß es sich hierbei um die Transformation eines Anfangszustandes der Schwingung zur Zeit t = 0 in einen Zustand zu einer späteren Zeit t handelt. Der vorliegende Beitrag hat das Ziel, den Schwingungsvorgang eindeutig als ein Transformationsproblem zu charakterisieren, das sich bei der Lösung linearer Differentialgleichungssysteme ergibt, und somit die formale und behandlungsmethodische Einheit zwischen schon früher von den Verfassern beschriebenen Transformationsproblemen herzustellen.

Oscillations represented as a transformation problem of matrix functions

Horst Melcher and Ewald Gerth

Summary

Oscillations are usually represented as solutions of a differential equation of second order. One cannot see, without further comment, from this conventional form of the solution, that it is a transformation from a state at the beginning (time t = 0) into a state at a later time.

In this article it will be shown, that one can definitely characterize oscillations as a problem of transformation by means of matrices. In this way the formal and methodical correspondence with problems of transformation formerly published can be pointed out.

¹Abstract: www.ewald-gerth.de/46abs.pdf - attached at the end of this article (page 68).

1 Lösung des Differentialgleichungssystems eines Transformationsproblems

In den bereits publizierten Arbeiten, bei denen es um die physikalischen Probleme der Kinetik des Keimaufbaues beim photographischen Prozeß [1] [2], die Transmission von Korpuskularstrahlung durch Materieschichten [3] [4] und die Umwandlung von Radionukliden [5] durch Kernprozesse ging, wurde die Lösung eines in Matrixform geschriebenen linearen Differentialgleichungssystems

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{K}(t)\mathbf{x}(t) \tag{1}$$

in Gestalt einer Matrizen-Transformationsgleichung benutzt; es bedeuten \mathbf{x} Vektor der physikalischen Größe, t Zeit und \mathbf{K} quadratische Koeffizientenmatrix. Die Lösung ergibt sich aus Gl. (1) durch Umwandlung in eine (ausgeartete) VOLTERRASche Integralgleichung mit dem Anfangsvektor $\mathbf{x}(0)$

$$\mathbf{x}(t) = \mathbf{x}(0) + \int_{0}^{t} \mathbf{K}(\tau) \mathbf{x}(\tau) d\tau$$
(2)

und Entwicklung derselben in eine NEUMANN
sche Reihe mit der Einheitsmatrix ${\bf 1}$

$$\mathbf{x}(t) = \left(\mathbf{1} + \int_{0}^{t} \mathbf{K}(t') \, \mathrm{d}t' + \int_{0}^{t} \mathbf{K}(t') \int_{0}^{t'} \mathbf{K}(t'') \, \mathrm{d}t'' \, \mathrm{d}t' + \cdots\right) \mathbf{x}(0). \tag{3}$$

Der in 01. (3) enthaltene Klammerfaktor ist die Resolventenmatrix $\mathbf{R}(t)$, durch die der Anfangsvektor $\mathbf{x}(0)$ in den Vektor $\mathbf{x}(t)$ transformiert wird.

Bei konstanter Koeffizientenmatrix **K** geht die Resolventenmatrix $\mathbf{R}(t)$ in die Matrix-Exponen-tialfunktion $\exp(\mathbf{K}t)$ über, so daß die Lösung in der Form

$$\mathbf{x}(t) = \exp(\mathbf{K}t)\mathbf{x}(0) \tag{4}$$

geschrieben werden kann. Derartige Resolventenmatrizen bestimmen auch das zeitliche Verhalten von Schwingungsvorgängen.

2 Konventionelle Lösung der Schwingungsgleichung

Eine ungedämpfte harmonische Schwingung wird durch die lineare, homogene Differentialgleichung

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \omega_0^2 x = 0 \tag{5}$$

beschrieben: x Schwingungsgröße, ω_0 Kreisfrequenz des ungedämpften Systems. Die Lösung ergibt sich mit der zugeordneten charakteristischen Gleichung

$$s^2 + \omega_0^2 = 0, (6)$$

die die Eigenwerte $s_1 = i\omega_0$ und $s_2 = -i\omega_0$ mit i als Einheit der imaginären Zahlen liefert, in der Gestalt

$$x(t) = x_1(0) \cdot \exp(\mathbf{i}\omega_0 t) + x_2(0) \cdot \exp(-\mathbf{i}\omega_0 t).$$
(7)

In entsprechender Weise erhält man für eine gedämpfte Schwingung mit einem der ersten Ableitung proportionalen Dämpfungsglied $2\rho \frac{\mathrm{d}x}{\mathrm{d}t}$ aus der Differentialgleichung

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\varrho \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = 0 \tag{8}$$

mit

$$s^2 + 2\varrho s + \omega_0^2 = 0 \tag{9}$$

die Lösung

$$x(t) = \exp(-\varrho t)[x_1(0) \cdot \exp(\sqrt{\varrho^2 - \omega_0^2} t) + x_2(0) \cdot \exp(-\sqrt{\varrho^2 - \omega_0^2} t)], \quad (10)$$

wobei die als Determinate formulierte Diskriminante

$$\varrho^2 - \omega_0^2 = -\omega^2 = \begin{vmatrix} \varrho & \omega_0 \\ \omega_0 & \varrho \end{vmatrix}, \tag{11}$$

je nachdem, ob sie kleiner oder größer als Null ist, darüber entscheidet, ob die Zeitfunktion x(t) einen aperiodischen oder periodischen Verlauf nimmt.

3 Komplexe Zahlen und Orthogonalmatrizen

Die Gleichungen (7) und (10) geben die Zeitfunktion x(t) in Abhängigkeit von zwei Anfangswerten an. Diese Lösungen sind aber für reelle Werte von x im Sinne einer Transformation nicht umkehrbar, d.h., es ist nicht möglich, aus dem Endwert x(t) eindeutig auf die Anfangswerte $x_1(0)$ und $x_2(0)$ zu schließen. Erst durch die Einführung der komplexen Zahlen z für alle Werte von x erhält man mit Hilfe der EULERschen Beziehung $\exp(i\alpha) = \cos \alpha + i \sin \alpha$ eine eindeutige Zuordnung von Anfangs- und Endwert der Lösung:

$$z(t) = \exp(\mathbf{i}\omega_0 t) \cdot z(0). \tag{12}$$

Die Gl. (12) stimmt formal mit Gl. (4) überein, wobei aber z als komplexe Zahl ein Vektor in der Gaußschen Zahlenebene ist. Der Exponentialausdruck $\exp(\mathbf{i}\omega_0 t)$ erweist sich als der Resolventenmatrix $\mathbf{R}(t)$ äquivalent.

Die Analogie ist vollständig, wenn man $\exp(\mathbf{i}\omega_0 t)$ nicht als eine aus zwei Komponenten bestehende komplexe Zahl, sondern als eine quadratische Matrix 2. Ordnung mit 4 Elementen auffaßt. Demzufolge müßte auch die Einheit der imaginären Zahlen **i** die Bedeutung einer quadratischen Matrix haben. Das ist der Fall, da sich die Orthogonalmatrizen

$$\left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) = \mathbf{1} \tag{13}$$

und

$$\left(\begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right) = \mathbf{I} \tag{14}$$

genauso wie die reelle Zahl 1 und die imaginäre Zahl i verhalten². Bemerkenswert ist, daß die mit den Größen 1 und I gebildeten komplexen Matrizen und damit auch Funktionen dieser Matrizen stets kommutativ sind.

 $^{^2\}mathrm{Die}$ Form dieser zweireihigen Matrizen entspricht den Paul
ıschen Spin-Matrizen.

⁵⁸

Für die Matrizen

$$\begin{pmatrix} a_1 & -b_1 \\ b_1 & a_1 \end{pmatrix} = \mathbf{Z}_1 \tag{15}$$

$$\begin{pmatrix} a_2 & -b_2 \\ b_2 & a_2 \end{pmatrix} = \mathbf{Z}_2 \tag{16}$$

gilt also

$$\mathbf{Z}_1 \mathbf{Z}_2 = \mathbf{Z}_2 \mathbf{Z}_1. \tag{17}$$

Die Determinante der komplexen Matrix ${\bf Z}$ liefert das Quadrat des absoluten Betrages, d.h. das Amplituden
quadrat

$$|\mathbf{Z}| = \begin{vmatrix} a & -b \\ b & a \end{vmatrix} = a^2 + b^2, \tag{18}$$

und unterscheidet sich somit von dem Absolutbetrag der komplexen Zahl $z=a+{\bf i}b$ durch die Quadratwurzel

$$|z| = |a + \mathbf{i}b| = \sqrt{a^2 + b^2}.$$
 (19)

Das Produkt der komplexen Matrix $|\mathbf{Z}| = \mathbf{1}a + \mathbf{I}b$ mit ihrer konjugiert-komplexen Matrix $|\mathbf{Z}|^* = \mathbf{1}a - \mathbf{I}b$ ist mit Gl. (18)

$$\mathbf{Z}\mathbf{Z}^* = \mathbf{1}|\mathbf{Z}| = \mathbf{1}|\mathbf{Z}^*|. \tag{20}$$

Der Tangens des Phasenwinkels φ ergibt sich als Quotient der Elemente der ersten Spalte der Matrix ${\bf Z}$

$$\tan \varphi = b/a. \tag{21}$$

Schreibt man anstelle von Gl. (12)

$$\mathbf{Z}(t) = \exp(\mathbf{I}\omega_0 t)\mathbf{Z}_0,\tag{22}$$

so hat man damit die Lösung in Form einer linearen Matrixtransformation.

Die Resolvente $\exp(\mathbf{I}\omega t)$ berechnet man zweckmäßigerweise durch Reihenentwicklung. Man erhält

$$\exp(\mathbf{I}\omega t) = \begin{pmatrix} \cos\omega t & -\sin\omega t\\ \sin\omega t & \cos\omega t \end{pmatrix},\tag{23}$$

also ebenfalls eine Orthogonalmatrix.

Die EULERsche Beziehung $\exp(\mathbf{i}\omega t) = \cos \omega t + \mathbf{i} \sin \omega t$ ist somit eigentlich als eine Vektordarstellung der orthogonalen Transformationsmatrix (23) zu betrachten. Es liegt an den günstigen Orthogonalitätseigenschaften dieser Transformation, daß die Verkürzung der Matrix zu einem Vektor überhaupt möglich ist.

Grundsätzlich kann man in allen Fällen den Skalar 1 durch die Einheitsmatrix $\mathbf{1}$ und die Einheit der imaginären Zahlen i durch die Orthogonalmatrix \mathbf{I} ersetzen und erhält dann eine der Matrizentransformation adäquate Darstellung.

4 Darstellung der Schwingungsdifferentialgleichung mit Hilfe von Orthogonalmatrizen

Das Differentialgleichungssystem der ungedämpften Schwingung läßt sich leicht angeben, wenn man die Schwingung als die Projektion einer Kreisbewegung in der Gaußschen Zahlenebene auf die reelle (oder imaginäre) Achse auffaßt.

Man betrachtet die Kreisbewegung im Koordinatenkreuz mit den Achsen x_1 und x_2 . Aus Abb. l entnimmt man unmittelbar das System

$$\begin{aligned} \dot{x}_1 &= & -\omega_0 x_2 \\ \dot{x}_2 &= & \omega_0 x_1 \\ \end{aligned}$$

das - in Matrizenform geschrieben -

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
(25)

die Orthogonalmatrix \mathbf{I} in der Koeffizientenmatrix

$$\mathbf{K} = \mathbf{I}\omega_0 \begin{pmatrix} 0 & -\omega_0 \\ \omega_0 & 0 \end{pmatrix}$$
(26)

erkennen läßt:

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{I}\omega_0 \mathbf{x}.$$
(27)

Gl. (27) ist auch erfüllt, wenn man den Vektor ${\bf x}$ gemäß
 Gln. (15,16) durch die Matrix ${\bf Z}$ ersetzt,

$$\frac{\mathrm{d}\mathbf{Z}}{\mathrm{d}t} = \mathbf{I}\omega_0\mathbf{Z},\tag{28}$$

und liefert gemäß Gl. (4) die Gl. (22) als Lösung.

Da jedes Differentialgleichungssystem mit n Gleichungen 1. Ordnung in eine Differentialgleichung n-ter Ordnung verwandelt werden kann, folgt aus Gl. (24) durch Einsetzen unmittelbar Gl. (5). Desgleichen liefert die charakteristische Determinante $|\mathbf{1}s - \mathbf{K}|$ die charakteristische Gleichung (6):

.

.

$$|\mathbf{1}s - \mathbf{I}\omega_0| = \begin{vmatrix} s & -\omega_0 \\ \omega_0 & s \end{vmatrix} = s^2 + \omega_0^2 = 0.$$
⁽²⁹⁾

Im Falle eines gedämpften Schwingsystems verringert sich die Geschwindigkeit jeweils um einen zur Achsenlänge proportionalen Betrag, so daß das Differentialgleichungssystem mit einer noch unbestimmten Kreisfrequenz ω die Form

$$\begin{aligned} x_1 &= -\rho x_1 - \omega x_2 \\ \dot{x}_2 &= \omega x_1 - \rho x_2 \end{aligned} \tag{30}$$

annimmt. Die Koeffizientenmatrix ist hierin komplex:

$$\mathbf{K} = -\mathbf{1}\varrho + \mathbf{I}\omega. \tag{31}$$

Die charakteristische Determinante ergibt nun

$$\begin{vmatrix} s+\varrho & -\omega \\ \omega & s+\varrho \end{vmatrix} = s^2 + 2\varrho s + \varrho^2 + \omega^2 = 0.$$
(32)

Der Vergleich mit GL (9) läßt erkennen, daß sich die Kreisfrequenz ω des gedämpften Systems von der Kreisfrequenz ω_0 des ungedämpften Systems unterscheidet:

$$\omega^2 = \omega_0^2 - \varrho^2. \tag{33}$$

Mit de Koeffizientenmatrix Gl. (31) lautet die Transformationsgleichung einer gedämpften Schwingung

$$\mathbf{Z}(t) = \exp[(-\mathbf{1}\rho + \mathbf{I}\omega)t]\mathbf{Z}(0).$$
(34)

Wegen der Kommutativität der Matrizen kann man auch den Dämpfungsfaktor abspalten:

$$\mathbf{Z}(t) = \exp(-\mathbf{1}\varrho t) \exp(\mathbf{I}\omega t) \mathbf{Z}(0).$$
(35)

Dieser lässt sich dann als skalarer Faktor zu der Resolventenmatrix der ungedämpften periodischen Funktion Gl. (22), jedoch mit der Kreisfrequenz der gedämpften Schwingung ω darstellen:

$$\mathbf{R}(t) = \exp(-\varrho t) \exp(\mathbf{I}\omega t). \tag{36}$$

5 Schwingungen bei zeitlich veränderlicher Koeffizientenmatrix

Das Schwingsystem kann zeitliche Veränderungen erfahren hinsichtlich der Kreisfrequenz ω – bei mechanischen Schwingern beispielsweise durch Massenverlust – und hinsichtlich der Dämpfung ϱ – bei elektrischen Schwingern beispielsweise durch Erwärmung des Widerstandes.

Erfolgt die erste Transformation bei einer Koeffizientenmatrix \mathbf{K}_1 in der Zeit t_1 ,

$$\mathbf{Z}(t_1) = \exp(\mathbf{K}_1 t_1) \mathbf{Z}(0), \tag{37}$$

und die zweite Transformation bei der Koeffizientenmatrix \mathbf{K}_2 in der Zeit t_2 ,

$$\mathbf{Z}(t_2) = \exp(\mathbf{K}_2 t_2) \mathbf{Z}(1) = \exp(\mathbf{K}_2 t_2) \exp(\mathbf{K}_1 t_1) \mathbf{Z}(0),$$
(38)

so werden die Transformationsmatrizen zu einer resultierenden Transformationsmatrix \mathbf{R}_{res} multiplikativ zusammengefaßt, wobei wegen der Kommutativität dieser Matrizen gilt:

$$\mathbf{R}_{res}(t_1 + t_2) = \exp(\mathbf{K}_2 t_2) \exp(\mathbf{K}_1 t_1) = \exp(\mathbf{K}_1 t_1) \exp(\mathbf{K}_2 t_2) = \exp(\mathbf{K}_1 t_1 + \mathbf{K}_2 t_2).$$
(39)

Bei kontinuierlicher Veränderung von $\mathbf{K}(t)$ als Zeitfunktion würde im Falle der Nichtkommutativität der Matrizen das VOLTERRAsche Produktintegral

$$\mathbf{R}_{res}(t) = \int_{0}^{t} \exp[\mathbf{K}(\tau) \, \mathrm{d}\tau] = \int_{0}^{t} [\mathbf{1} + \mathbf{K}(\tau) \, \mathrm{d}\tau]$$
(40)

gelten; im vorliegenden Fall der Kommutativität aber vereinfacht sich die Beziehung (40)zu

$$\mathbf{R}_{res}(t) = \exp\left[\int_{0}^{t} \mathbf{K}(\tau) \, \mathrm{d}\tau\right].$$
(41)

6 Erzwungene Schwingungen, Filterung, Resonanz

Eine äußere Einwirkung auf ein Schwingsystem führt zu einem erzwungenen Schwingvorgang, der durch die inhomogene Schwingungsdifferentialgleichung beschrieben wird. Dabei muß das Inhomogenitätsglied der Art der physikalischen Kopplung zwischen der einwirkenden Größe und dem Schwingsystem entsprechen. Als konventionelle Lösung wird in der Lehrbuchliteratur im allgemeinen nur der Fall der Kopplung eines Schwingsystems mit einer periodischen Kraft $F_0 \cos \omega_a t$ angegeben; ω_a ist die aufgeprägte Kreisfrequenz. Die Lösung der Differentialgleichung (42) mit dem allgemeinen Inhomogenitätsglied F(t) für eine beliebige zeitabhängige äußere Kraft kann man mit Hilfe der LAPLACE-Transformation finden. Mit $F_0/m \equiv B_0$, wobei B_0 als kraftanaloge Größe definiert wird, erhält man als Differentialgleichung für die erzwungene Schwingung

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\varrho \frac{\mathrm{d}x}{\mathrm{d}t} + \omega_0^2 x = B_0 \cos(\omega_a + \varphi). \tag{42}$$

Es sei bemerkt, daß auch noch weitere, nicht kraftanaloge Größen auf ein Schwingsystem einwirken können, z.B. impulsanaloge Größen; man unterscheidet dann Kraftund/oder Impulskopplung.

In der Matrizenschreibweise lautet die inhomogene – hier gleich auf die konstante Koeffizientenmatrix **K** und die komplexe Matrix $\mathbf{Z}(t)$ und ein Inhomogenitätsglied $\mathbf{P}(t)$ bezogene – lineare Differentialgleichung zu Gl. (1)

$$\frac{\mathrm{d}\mathbf{Z}(t)}{\mathrm{d}t} = \mathbf{K}\mathbf{Z}(t) + \mathbf{P}(t). \tag{43}$$

Die allgemeine Lösung dieser Gleichung ist die Übergangsfunktion

$$Z(t) = \exp(\mathbf{K}t)\mathbf{Z}(0) + \exp(\mathbf{K}t)\int_{0}^{t} \exp(-\mathbf{K}\tau)\mathbf{P}(\tau) \,\mathrm{d}\tau.$$
 (44)

Der erste Summand beschreibt den von der äußeren Einwirkung unbeeinflußten Schwingungsvorgang, während in dem zweiten Summanden die Beeinflussung des Systems ausgedrückt ist. Für $t \to \infty$ verschwindet infolge der Dämpfung der erste Summand, dagegen stellt sich für den zweiten Summanden der stationäre Zustand ein, bei einem periodischen Inhomogenitätsglied beispielsweise als angeregte Dauerschwingung.

Während in dem Inhomogenitätsglied in Gl. (42) wegen des Differentialquotienten zweiter Ordnung eine kraftanaloge Größe angemessen ist, hat man für das Inhomogenitätsglied in Gl. (43) eine impulsanaloge Größe einzusetzen. Es ist ohne weiteres möglich, beliebige andere Größen in impulsanaloge Größen umzurechnen, wie weiter unten gezeigt wird. Das Verfahren soll im folgenden an einigen Beispielen demonstriert werden.

6.1 Konstantes Inhomogenitätsglied

Zu dem durch Gl. (43) ausgedrückten Impuls des gedämpften Schwingsystems tritt ein konstanter Betrag, der mit den der Zeit reziproken Größen σ und φ sowie der Anfangsauslenkung \mathbb{Z}_0 durch

$$\mathbf{P} = \mathbf{K}_a \mathbf{Z}_0 \tag{45}$$

gegeben ist. \mathbf{K}_a bedeutet darin die Koeffizientenmatrix der aufgeprägten Einwirkung; sie ist ebenso wie die Matrix \mathbf{K} von komplexer Natur,

$$\mathbf{K}_{a} = \begin{pmatrix} \sigma & -\varphi \\ \varphi & \sigma \end{pmatrix}. \tag{46}$$

Mit Gl. (45) erhält man dann nach Gl. (44) die Lösung

$$\mathbf{Z}(t) = \exp(\mathbf{K}t)\mathbf{Z}(0) + [\mathbf{1} - \exp(\mathbf{K}t)]\mathbf{K}^{-1}\mathbf{P}$$
(47)

als Übergangsfunktion, die eine gedämpfte Schwingung beschreibt, bei der sich der Ruhepunkt allmählich innerhalb des Koordinatensystems bis zu einer Endlage verschiebt.

Für die Endlage als stationärer Zustand folgt aus (47) mit Gl. (31) und $t \to \infty$

$$\mathbf{Z}_{\infty} = \mathbf{K}^{-1}\mathbf{P} = \frac{1}{\varrho^2 + \omega^2}\mathbf{K}_a = \begin{pmatrix} \omega\varphi - \varrho\sigma & \varrho\varphi + \omega\sigma \\ -(\varrho\varphi + \omega\sigma) & \omega\varphi - \varrho\sigma \end{pmatrix}\mathbf{Z}_0, \quad (48)$$

also eine Größe ohne jegliche Zeitabhängigkeit.

Die weitere Durchrechnung ergibt mit

$$\mathbf{Z}_0 = \mathbf{1}x_0 \tag{49}$$

und Berücksichtigung von Gl. (18) für die Amplitude a_{∞} der Endlage

$$a_{\infty} = \sqrt{|\mathbf{Z}_{\infty}|} = \sqrt{\frac{\sigma^2 + \varphi^2}{\varrho^2 + \omega^2}} x_0 = \sqrt{\frac{|\mathbf{K}_a|}{|\mathbf{K}|}} x_0.$$
(50)

6.2 Impulsanaloges, periodisches Inhomogenitätsglied

Die Einwirkung auf das Schwingsystem erfolgt durch einen periodischen Impuls mit der Kreisfrequenz der aufgeprägten Schwingung ω_a und dem Anfangsimpuls C, der auch die Phase enthält:

$$P(t) = \exp(\mathbf{I}\omega_a t)\mathbf{C}.$$
(51)

Mit Gl. (51) ergibt Gl. (44) die Lösung

$$Z(t) = \exp(\mathbf{K}t)[Z(0) - (\mathbf{I}\omega_a - \mathbf{K})^{-1}\mathbf{C}] + \exp(\mathbf{I}\omega_a t)[\mathbf{I}\omega_a - \mathbf{K}]^{-1}\mathbf{C}$$
(52)

wobei wiederum die Kommutativität der Matrizen 1, I und K
 ausgenutzt werden kann.

Der stationäre Zustand

$$Z_{\infty}(t) = (\mathbf{I}\omega_a - \mathbf{K})^{-1} \exp(\mathbf{I}\omega_a t) \mathbf{C}$$
(53)

ist durch eine periodische Funktion $\exp(\mathbf{I}\omega_a t)$ gekennzeichnet; das System schwingt in der Frequenz der aufgeprägten Schwingung, aber mit veränderter, von ω_a abhängiger Amplitude. Der Amplitudenfaktor im zweiten Summanden von Gl. (52)

$$(\mathbf{I}\omega_a - \mathbf{K})^{-1}\mathbf{C} = \frac{1}{\omega^2 + \varrho^2} \begin{pmatrix} \varrho & -(\omega - \omega_a) \\ (\omega - \omega_a) & \varrho \end{pmatrix} \mathbf{C} = \frac{1}{\omega^2 + \varrho^2} (\mathbf{I}\omega_a - \mathbf{K}^*)\mathbf{C}, \quad (54)$$

worin \mathbf{K}^* die konjugiert-komplexe Matrix zu \mathbf{K} ist, gibt Auskunft über Amplitude und Phasenverschiebung.

Das der Schwingleistung proportionale Amplitudenquadrat findet man durch Bildung der Determinante des zweiten Summanden von Gl. (52) bzw. (54). Mit Gl. (23), Gl. (31) und $\mathbf{C} = \mathbf{1}c$ folgt dann

$$a_{\infty}^{2} = \frac{c^{2}}{\varrho^{2} + (\omega - \omega_{a})^{2}},$$
(55)

also das symmetrische Resonanzprofil einer LORENTZ-Funktion mit dem Maximum bei der Frequenz ω des gedämpften Systems

$$\omega_{a_{\max}} = \sqrt{\omega_a^2 - \varrho^2}.$$
 (56)

Die Phasenverschiebung ergibt sich durch Bildung des Quotienten der Elemente der ersten Spalte von Gl. (54) gemäß Gl. (21)

$$\tan\varphi = \frac{\omega - \omega_a}{\varrho} \tag{57}$$

Im Resonanzfall $\omega = \omega_a$ ist die Phasenverschiebung $\varphi = 0$, für $\omega_a \to 0$ beträgt sie $\varphi = \arctan \frac{\omega}{\varrho}$, und für $\omega_a \to \infty$ ist sie $\varphi = -\frac{\pi}{2}$.

Zu dem gleichen Ergebnis gelangt man auch durch Anwendung der FOURIER-Transformation auf die Resolvente der gedämpften Schwingung

$$\mathbf{R}(t) = \exp(\mathbf{K}t). \tag{58}$$

Das einseitige FOURIER-Integral in Matrizenschreibweise

$$\mathbf{F}(\omega_a) = \int_{0}^{\infty} \exp(-\mathbf{I}\omega_a t) \mathbf{S}(t) \, \mathrm{d}t$$
(59)

ergibt mit Gl. (58) und $\mathbf{S} = \mathbf{RC}$

$$\mathbf{F}(\omega_a) = (\mathbf{I}\omega_a - \mathbf{K})^{-1}\mathbf{C},\tag{60}$$

also den Amplitudenfaktor zu der periodischen Funktion $\exp(\mathbf{I}\omega_a)t$ in Gl. (52).

Die FOURIER-Transformation entspricht offenbar dem Fall, daß die Einwirkung auf das Schwingsystem durch eine periodische, impulsanaloge Größe erfolgt. In einem mechanischen System würde das einer Impulskopplung entsprechen, die hiermit klar von der Kraftkopplung gemäß Gl. (42) unterschieden wird.

Die Matrizenschreibweise eröffnet somit eine klarere Einsicht in die physikalischen Zusammenhänge der verschiedenen Kopplungsarten, als es mit der herkömmlichen Behandlung dieses Problems möglich war. Durch die Impulskopplung werden vor allem auch solche physikalisch wichtigen Systeme erfaßt, die ein aperiodisches Verhalten mit der Eigenfrequenz $\omega = 0$ zeigen, z.B. elektronische Tiefpässe.

6.3 Kraftanaloges, periodisches Inhomogenitätsglied

Die Differentialgleichung (43) verlangt ein impulsanaloges Inhomogenitätsglied. Wenn dies nicht von vornherein – wie z.B. in den Fällen 6.1. und 6.2. – gegeben ist, muß eine Umrechnung in die adäquate Impulsgröße durchgeführt werden. Für die Kraftkopplung findet man diese Größe folgendermaßen: Man setzt das inhomogene Gleichungssystem - entsprechend Gl. (30) – mit den zunächst noch unbekannten Inhomogenitätskoeffizienten f_1 und f_2 an,

$$\dot{x}_{1} = -\varrho x_{1} - \omega x_{2} + f_{1} \dot{x}_{2} = \omega x_{1} - \varrho x_{2} + f_{2}$$
(61)

und erhält daraus durch gegenseitige Substitution beider Gleichungen

$$\ddot{x}_1 + 2\varrho \dot{x}_1 + (\omega^2 + \varrho^2) x_1 = \dot{f}_1 + \varrho f_1 - \omega f_2$$

$$\ddot{x}_2 + 2\varrho \dot{x}_2 + (\omega^2 + \varrho^2) x_2 = \dot{f}_2 + \omega f_1 + \varrho f_2.$$
 (62)

Für die linke Seite kann man bei der Kraftkopplung nach Gl. (42) eine periodische Funktion mit beliebiger Phasenverschiebung φ einsetzen. Mit den Funktionen $B_0 \cos \omega_a t$ und $B_0 \sin \omega_a t$ erhält man das System

$$\dot{f}_1 = -\varrho f_1 + \omega f_2 + B_0 \cos \omega_a t$$

$$\dot{f}_2 = -\omega f_1 - \varrho f_2 + B_0 \sin \omega_a t$$
(63)

oder – ergänzt zu einer Matrizengleichung –

$$\mathbf{\hat{f}} = \mathbf{K}^* \mathbf{f} + B_0 \exp \mathbf{I}\omega_a t, \tag{64}$$

worin

$$\mathbf{K}^* = \begin{pmatrix} -\varrho & \omega \\ -\omega_0 & -\varrho \end{pmatrix} \tag{65}$$

die konjugiert-komplexe Koeffizientenmatrix zu K nach Gl. (31) ist:

$$\mathbf{K} = \begin{pmatrix} -\varrho & -\omega \\ \omega & -\varrho \end{pmatrix}. \tag{66}$$

Die Lösung von Gl. (64) – entsprechend Gl. (52) – ergibt sich nach Gl. (44) zu

$$\mathbf{f}(t) = \exp(\mathbf{K}^* t) [\mathbf{f}(0) - (\mathbf{I}\omega_a - \mathbf{K}^*)^{-1} B_0] + B_0 \exp(\mathbf{I}\omega_a t) (\mathbf{I}\omega_a - \mathbf{K}^*)^{-1}.$$
 (67)

Das Inhomogenitätsglied bei Kraftkopplung lautet somit für den stationären Fall

$$\mathbf{P}(t) = B_0 \exp(\mathbf{I}\omega_a t) (\mathbf{I}\omega_a - \mathbf{K}^*)^{-1}.$$
(68)

Führt man Gl. (68) in Gl. (44) ein, so erhält man die Lösung

$$\mathbf{Z}(t) = \exp(\mathbf{K}t)[\mathbf{Z}(0) - (\mathbf{I}\omega_a - \mathbf{K}^*)^{-1}(\mathbf{I}\omega_a - \mathbf{K})^{-1}B_0] + B_0 \exp(\mathbf{I}\omega_a t)(\mathbf{I}\omega_a - \mathbf{K}^*)^{-1}(\mathbf{I}\omega_a - \mathbf{K})^{-1}.$$
(69)

Hierin ist das reziproke Produkt

$$(\mathbf{I}\omega_{a} - \mathbf{K}^{*})^{-1}(\mathbf{I}\omega_{a} - \mathbf{K})^{-1} = [-\mathbf{1}\omega_{a}^{2} - \mathbf{I}\omega_{a}(\mathbf{K}^{*} + \mathbf{K}) + \mathbf{K}^{*}\mathbf{K}]^{-1}$$
$$= \begin{pmatrix} \varrho^{2} + \omega^{2} - \omega_{a}^{2} & -2\varrho\omega_{a} \\ 2\varrho\omega_{a} & \varrho^{2} + \omega^{2} - \omega_{a}^{2} \end{pmatrix}^{-1}$$
$$= \frac{1}{(\varrho^{2} + \omega^{2} - \omega_{a}^{2})^{2} + 4\varrho^{2}\omega_{a}^{2}} \begin{pmatrix} \varrho^{2} + \omega^{2} - \omega_{a}^{2} & 2\varrho\omega_{a} \\ -2\varrho\omega_{a} & \varrho^{2} + \omega^{2} - \omega_{a}^{2} \end{pmatrix}$$
(70)

und somit das Amplituden quadrat als Determinante des stationären Summanden von Gl. (69)

$$a^{2} = \frac{B_{0}^{2}}{(\varrho^{2} + \omega^{2} - \omega_{a}^{2})^{2} + 4\varrho^{2}\omega_{a}^{2}}.$$
(71)

Diese Beziehung stimmt – wenn man noch die Kreisfrequenz des ungedämpften Systems $\omega_0^2 = \varrho^2 + \omega^2$ nach Gl. (33) einführt – mit der Darstellung in einschlägigen Lehrbüchern überein.

Man erhält die unsymmetrische Resonanzkurve eines durch Kraftkopplung erregten Schwingsystems, dessen Maximum bei

$$\omega_{a_{\max}} = \sqrt{\omega^2 - \varrho^2} = \sqrt{\omega_0^2 - 2\varrho^2} \tag{72}$$

liegt, das somit noch weiter in Richtung kleinerer Frequenzen verschoben ist als das Maximum im Falle der Impulskopplung nach 6.2.

Die Phasenverschiebung ist bei Kraftkopplung gemäß Gl. (21) der Quotient der Elemente der ersten Spalte von Gl. (70),

$$\tan\varphi = -\frac{2\varrho\omega_a}{\varrho^2 + \omega^2 - \omega_a^2} = -\frac{2\varrho\omega_a}{\omega_0^2 - \omega_a^2}.$$
(73)

Sie beträgt für $\omega_a = \omega_0$ $\varphi = -\frac{\pi}{2}$, für $\omega_a = 0$ $\varphi = 0$ und für $\omega_a \to \infty$ $\varphi = -\pi$ und unterscheidet sich damit von der Resonanz bei Impulskopplung nach 6.2. um etwa $-\frac{\pi}{2}$. Im Resonanzfall nach Gl. (72) ist die Phasenverschiebung

$$\tan\varphi = \frac{\sqrt{\omega_0^2 - 2\varrho^2}}{\varrho}.$$
(74)

7 Abschließende Bemerkung

Für die Behandlung gekoppelter Oszillatoren erweisen sich die Matrizen-Differentialgleichungssysteme als besonders zweckmäßig. Es ist damit prinzipiell möglich, beliebig viele gekoppelte Oszillatoren, etwa als Atome in Molekülen oder in Kristallen, zu beschreiben und zu berechnen; hierbei sind auch variable Kopplungen sowohl zwischen linearen (kettenartigen) oder flächenhaften bzw. räumlich angeordneten Oszillatoren darstellbar.

Literatur

- Gerth, E.: Analytische Darstellung der Kinetik des Keimaufbaus beim photographischen Prozeß. Diss. (B) TU Dresden 1972
- [2] Gerth, E.: Analytische Darstellung der photographischen Schwärzungsfunktion mit Hilfe von Matrixfunktionen. Annalen der Physik 7. Folge 27 (1971), 126
- [3] Melcher, H., E. Gerth: Behandlung von Strahlungstransportproblemen mit Matrixfunktionen. Wiss. Z. Päd. Hochschule "Dr. Theodor Neubauer" Erfurt-Mühlhausen, Math.-Naturw. Reihe 8 (1972), Heft l, 3
- [4] Melcher, H., E. Gerth: Lösung des stationären Strahlungstransportproblems für Energiestreuung mit Hilfe von Matrizenfunktionen. Kernenergie 16 (1973), 47
- [5] Melcher, H., E. Gerth: Analytische Behandlung und numerische Berechnung der Umwandlungsreihen von Radionukliden mit Hilfe von Matrizenfunktionen. Wiss.
 Z. Päd. Hochschule ,,Dr. Theodor Neubauer" Erfurt-Mühlhausen. Math.-Naturw. Reihe, 9 (1973), Heft 2, 21

Oscillations represented as a transformation problem of matrix functions

Horst Melcher¹ and Ewald Gerth²

¹ Pedagogic College ,,Dr. Theodor Neubauer", Erfurt-Mühlhausen, GDR

² Central Institute for Astrophysics of the Academy of Sciences of the GDR, Potsdam

Abstract

Oscillations are usually represented as the solution of a differential equation of second order. From this conventional form of the solution, it is not evident at once that the oscillating system goes over from a state at the beginning to a state at a later time by transformation of the components. In the here referred article it is demonstrated, that oscillations can definitely be characterized as a problem of transformation by means of matrices, which reproduces completely the classical solution of the oscillation differential equation. The oscillation is regarded as a reaction process, which is simulated in a functional sequence of small steps establishing the resolving matrix by expansion of a matrix exponential series. There is no need for the solution of any eigenvalue problem. The application of matrices, moreover, proves to be especially suitable for the analytical treatment and numerical calculation of coupled oscillators. Coupling is investigated by the resonance of an oscillator on excitation of external oscillations. By this way one can describe even extended systems of coupled oscillators like atoms and molecules in a crystal lattice in different mutual relations and spatial arrangements. The matrix version to treatise oscillation processes offers the advantage that it could be adjusted to the well-developed methods of the solution of interacting reaction systems, the calculating algorithms of which are already at disposition. In such a reaction system an oscillator is represented as a reacting component by a two-row elementary submatrix of the type of PAULI's spin matrices. Thus, also the combination with other – e.g., physical, chemical, or biological – reaction systems and the simultaneous solution of them is possible.

Publication

WISSENSCHAFTLICHE ZEITSCHRIFT DER PÄDAGOGISCHEN HOCHSCHULE ,,DR. THEODOR NEUBAUER" ERFURT-MÜHLHAUSEN Mathematisch-Naturwissenschaftliche Reihe, 11. Jahrgang 1975, Heft 2, S. 67–71 Eingegangen am 10. 5. 1975 SCIENTIFIC JOURNAL OF THE PEDAGOGIC COLLEGE "DR. THEODOR NEUBAUER" ERFURT-MÜHLHAUSEN Mathematical-scientific row, 11. Year 1975, Volume 2, p. 67–71 Received 1975, May 10th

Article available in German by the web-address: www.ewald-gerth.de/46.pdf

Ein heuristisches Modell für Linienprofile¹

Эвристическая модель для профилей спектральных линий

A Heuristic Model for Spectral-Line-Profiles

Von H. MELCHER und E. GERTH, Potsdam

Eingegangen am 7. 4. 1977

Zusammenfassung

Die Fourier-Transformation einer Poisson-Verteilung ergibt eine Verteilungsfunktion, die man als Lorentz-Funktion n-ten Grades bezeichnen kann; sie ist zur Darstellung von symmetrischen Linienprofilen geeignet. Diese Funktion umfaßt die Grenzfälle der Gauß-Funktion und der Lorentz-Funktion ersten Grades. Mit ihr lassen sich Voigt-Funktionen approximieren bzw. ersetzen. Eine allgemeine Lorentz-Funktion – ein multiplikativer und additiver Ausdruck – ergibt sich auch für Leistungsübertragungen bei Netzen elektronischer Tiefpässe, so daß ein abstraktes Modell eines solchen Netzwerkes (oder eines kinetischen Reaktionssystems) den Vorgängen im Originalraum zugrunde gelegt werden kann, die zu den statistischen Verteilungen im Frequenzraum führen.

Резюме

Преобразование Фурье распределения Пуассона даёт функцию распределения, которую можно назвать функцией Лоренца степени *n*. Она пригодна для представления симметричных профилей линий. Эта функция заключает в себе предельные случаи функций Гаусса и Лоренца первой степени. С помощью этой функции можно аппроксимировать или заменить функцию Фохта.

Общее представление функции Лоренца получается и для передачи мощности в сетях электронных фильтров нижных частот, так что абстрактная модель такой сети (или кинетической системы реакции) может быть положена в основу процессов в начальном постранстве функции, отражающихся в постранстве частоты как спектральные распределения.

Abstract

By means of the Fourier-transformation for the statistical *Poisson*-distribution a function y(x) is obtained, which is called in this paper *Lorentz*-function of the *n*-th degree: $y = (1 + x^2)^{-n}$.

Special cases such as n = 1 and $n \to \infty$, resp. are used for representing types of spectral lines: the *Lorentz*- or dispersion-type and the *Gauss*-type, resp. Up to now the region between these two types has been represented by the so-called *Voigt*-function. The new general *Lorentz*-function is suitable for approximating or replacing the complicated *Voigt*-function.

The general *Lorentz*-function is based upon an abstract model which is valid for processes in kinetic systems or in electronic networks.

Einleitung

Für Linienprofiluntersuchungen wird häufig die *Voigt*-Funktion verwendet, die aus der Faltung einer *Lorentz*- und einer *Gauß*-Funktion entsteht. Hierbei sind nicht immer die speziellen Voraussetzungen eines Dispersions- und eines Dopplerprofils erfüllt.

¹Abstract: www.ewald-gerth.de/47abs.pdf – attached at the end of this article (page 75).

Es werden nachstehend eine allgemeine Lorentz-Funktion (19) und eine Lorentz-Funktion *n*-ten Grades (11) definiert, die geeignet sind, den Bereich der Voigt-Funktion, der zwischen den Grenzlagen des Lorentz- und Gauß-Profils liegt. zu erfassen und darüber hinaus auch noch relativ breitere Linienflügel darzustellen. Diese Funktionen ergeben sich auf der Grundlage einer Modellvorstellung, wonach stufen- oder kettenförmige Prozesse reaktionskinetischer Art im Originalraum zu Linienprofilen im Frequenzraum führen.

Ein solches heuristisches Modell ist auch den Untersuchungen über Leistungsfaktoren elektronischer Filter (Hoch- und Tiefpässe) adäquat, AVO man durch *Fourier*-Transformation zur allgemeinen *Lorentz*-Funktion gelangt. Durch *Fourier*-Transformation der *Poisson*-Funktion der Besetzungszahl z ergibt sich ein als *Lorentz*-Funktion des Grades n = z + 1 zu bezeichnender Ausdruck, der als Grenzfälle für n = 1 die *Lorentz*-Funktion ersten Grades und für $n \to \infty$ die *Gau* β -Funktion umfaßt; die Werte n < 1 führen auf Typen relativ breiter Linienflügel. Mit Hilfe der *Lorentz*-Funktion *n*-ten Grades können *Voigt*-Profile approximiert bzw. ersetzt und weitere Faltungen ausgeführt werden.

1 Allgemeine *Lorentz*-Funktion bei elektronischen Tief- und Hochpässen

Die Lorentz-Funktion

$$P_{\rm L} = \frac{1}{1+x^2} \tag{1}$$

dient nicht nur zur Berechnung von Spektrallinienprofilen, sondern spielt auch in vielfältiger Weise bei anderen physikalischen Aufgabenstellungen eine große Rolle, z. B. im Falle der Resonanz bei erzwungenen mechanischen Schwingungen, bei Leistungsübertragungen durch elektronische Tiefpässe, bei der *Breit-Wigner*-Beziehung für Wirkungsquerschnitte, bei der Depolarisation der Resonanzfluoreszenz als Funktion der Magnetfeldstärke (*Hanle*-Effekt) und – in Analogie zur *Voigt*-Funktion – bei der Sechs-Faktoren-Formel in der Reaktortheorie.

Den Leistungsfaktor eines elektronischen Tiefpasses beschreibt eine Lorentz-Funktion vom Typ (1)

$$P_{\rm L,T} = \frac{1}{1 + (\omega RC)^2} = \frac{1}{1 + \left(\frac{\omega}{\alpha}\right)^2};$$
(2)

hierin bedeuten ω die Kreisfrequenz, R den Widerstand und C die Kapazität sowie $\alpha=1/RC$ die Halbwertskreisfrequenz.

Die Frequenzfunktion (2) des Leistungsfaktors folgt durch *Fourier*-Transformation aus der Übergangsfunktion

$$U = U_0 \exp(-t/RC),\tag{3}$$

die ihrerseits eine Übergangsfunktion einer Sprungfunktion (Deltafunktion) an einem RC-Glied ist, nach Multiplikation mit der konjugiert-komplexen Fourier-Transformierten.

Für zwei hintereinandergeschaltete Tiefpässe ($\alpha_1 = 1/R_1C_1$ und $\alpha_2 = 1/R_2C_2$) erhält man als *Fourier*-Transformierte $\Phi_{12} = \Phi_1 \cdot \Phi_2$, also das Produkt aus den einzelnen *Fourier*-Transformierten, da der Faltung der Übergangsfunktionen im Originalraum eine Multiplikation ihrer *Fourier*-Transformierten im Frequenzraum entspricht. Als Leistungsfaktor berechnet man somit

$$P_{\rm L,T} = \frac{1}{1 + \left(\frac{\omega}{\alpha_1}\right)^2} \cdot \frac{1}{1 + \left(\frac{\omega}{\alpha_2}\right)^2}.$$
(4)

Ein analoges Ergebnis erhält man für hintereinandergeschaltete Hochpässe. Daraus ergibt sich dann für die aus m Hoch- und aus n Tiefpässen zusammengesetzte Wahrscheinlichkeit der Leistungsübertragung

$$P_{\mathrm{L,T,H}} = \frac{1}{\left\{\prod_{i=1}^{m} \left[1 + \left(\frac{\omega_{\mathrm{H},i}}{\omega}\right)^{2}\right]\right\} \left\{\prod_{k=1}^{n} \left[1 + \left(\frac{\omega}{\omega_{\mathrm{T},k}}\right)^{2}\right]\right\}}.$$
(5)

Der Produktausdruck (5) stellt eine verallgemeinerte *Lorentz*-Form dar: darin bedeuten $\omega_{\mathrm{H},i}$ bzw. $\omega_{\mathrm{T},k}$ die Halbwertskreisfrequenzen des *i*-ten Hoch- bzw. des *k*-ten Tiefpasses.

2 Fourier-Transformierte der Gauß- und der Poisson-Funktion

Die $Gau\beta$ -Funktion

$$P_{\rm G} = \frac{\alpha}{\sqrt{\pi}} \exp\left(-(\alpha x)^2/2\right) \tag{6}$$

wird ebenfalls zur Darstellung impulsartiger Übergangsfunktionen verwendet [1], [2], [3]. Als *Fourier*-Transformierte erhält man wiederum eine $Gau\beta$ -Funktion im Frequenzraum

$$\Phi_{\rm G} = \exp\left(-\left(\frac{\omega}{\alpha}\right)^2/2\right) \tag{7}$$

und als Leistungsfaktor bzw. als Intensitätsverteilung, die das zugehörige Linienprofil beschreibt,

$$P_{\rm G} = \exp\left(-\left(\frac{\omega}{\alpha}\right)^2\right). \tag{8}$$

Die Poisson-Funktion

$$P_{x,z} = \frac{(\alpha x)^z \cdot \exp(-\alpha x)}{z!} \tag{9}$$

geht für z = 0 in die Exponentialfunktion und für $z \to \infty$ in die Gau β -Funktion über [4]. Hierin ist x die verallgemeinerte unabhängige Variable (im speziellen Fall die Zeit t) und z die Zellenbesetzungszahl.

Damit kann gezeigt werden, daß zwischen der *Lorentz*-Funktion (2) und der *Gauß*-Funk-tion (8) ein Übergang besteht, der durch die *Poisson*-Funktion gegeben ist. Als *Fourier*-Transformierte der *Poisson*-Funktion erhält man

$$\Phi_{\rm p}(\omega) = \left(\frac{1 - \mathrm{i}\frac{\omega}{\alpha}}{1 + (\frac{\omega}{\alpha})^2}\right)^{z+1} \tag{10}$$

und für den Leistungsfaktor bzw. für die Intensitätsverteilung mit z + l = n

$$P_{\rm P} = \left(\frac{1}{1 + (\frac{\omega}{\alpha})^2}\right)^n.$$
 (11)

Die Form der Spektrallinie ist gemäß (11) durch die Parameter α (entsprechend einer Halbwertsbreite) und durch *n* bestimmt. Die Größe *n* entspricht der Anzahl gleichartiger Tiefpässe gemäß Gl. (2) einer Übertragungskette oder – in Analogie – der Ordnung eines kettenartigen Reaktionsablaufes. Die Beziehung (11) kann als *Lorentz*-Funktion *n*-ten Grades bezeichnet werden.

3 Grenzfälle der *Lorentz*-Funktion *n*-ten Grades

Der Wahrscheinlichkeitsausdruck (11) ist bei der Fourier-Transformierten einer Poisson-Funktion für die Besetzungszahl z gleich der (z + 1)-fachen Potenz der Lorentz-Funktion (2). Die Gl. (2) erweist sich also als eine spezielle Beziehung, die für z =0 (bzw. n = 1) aus (11) folgt. Mit anderen Worten: Die Fourier-Transformierte der Poisson-Funktion der Besetzungszahl z ist eine Lorentz-Funktion des Grades z + 1.

Es läßt sich nun zeigen, daß die $Gau\beta$ -Funktion (8) für z -¿ co aus der Fourier-Transformierten der Poisson-Funktion folgt. Man geht hierbei zweckmäßigerweise nicht von der anomalen Dispersionsbeziehung (6), sondern von der normalen Dispersion aus,

$$F_{\rm G}(x) = \frac{1}{\sqrt{2\pi n}} \exp\left(-\frac{(\alpha x - n)^2}{2n}\right). \tag{12}$$

Hierin ist n = z + 1 (s. [4], S. 25 und 94). Im Unterschied zu (7) findet man

$$\Phi_{\rm G}(\omega) = \exp(-n/2) \cdot \exp\left[-n/2\left(\frac{\omega}{\alpha} + i\right)^2\right],\tag{13}$$

also zwar wiederum eine $Gau\beta$ -Funktion, die allerdings wegen der Asymmetrie der Funktion (12) zur Ordinatenachse nicht mehr reell ist; das Maximum hat eine Phasenverschiebung und ein Dekrement -n/2.

Als Leistungsfaktor ergibt sich aus (13) durch Multiplikation mit der konjugiertkomplexen Größe $(\omega)^2$

$$P_{\rm P} = \exp\left(-n\left(\frac{\omega}{\alpha}\right)^2\right). \tag{14}$$

Diese Gl. (14) unterscheidet sich von (8) durch den Faktor n im Exponenten. Bringt man die Gl. (11) mit z = n - 1 in die Form

$$P_{\rm P} = \left(\frac{1}{1 + \left(\frac{\omega}{\alpha}\right)^2}\right)^n = \left[1 + \left(\frac{\omega}{\alpha}\right)^2\right]^n.$$
 (15)

und führt für große n eine Reihenentwicklung durch,

$$\lim_{n \to \infty} P_{\rm P}(\omega) = \sum_{k=0}^{\infty} \frac{1}{k!} \left[-n \left(\frac{\omega}{\alpha}\right)^2 \right]^k,\tag{16}$$

so findet man für hinreichend große \boldsymbol{n}

$$P_{\rm P}(\omega) \approx \exp\left(-n\left(\frac{\omega}{\alpha}\right)^2\right),$$

d. h. Übereinstimmung mit (14).
Die *n*-te Wurzel aus (14) ergibt also die Beziehung (8) für die anomale Dispersion. Hingegen ergibt die *n*-te Wurzel aus (15) bzw. (11) die *Lorentz*-Funktion ersten Grades (2). Mit anderen Worten: Die *n*-te Potenz der *Lorentz*-Funktion und die *Gau* β -Funktion gleichen sich um so mehr, je größer der Exponent *n* ist. Die *Lorentz*-Funktion *n*-ten Grades (11) geht demnach für n = 1 bzw. $n \to \infty$ in die Grenzfälle der *Lorentz*-Funktion ersten Grades und in die *Gau* β -Funktion über.

4 Weitere Verallgemeinerungen

Für die Hintereinanderschaltung von n gleichartigen Tiefpässen gilt gemäß (11)

$$P_{\rm P} = \left(\frac{1}{1+\left(\frac{\omega}{\alpha}\right)^2}\right)^n = \prod_{k=1}^n \frac{1}{1+\left(\frac{\omega}{\alpha}\right)^2}.$$
(17)

Die Produkte der Lorentz-Funktionen stellen Faltungen von (gleichartigen) Exponentialfunktionen im Originalraum dar, also solcher Übergangsfunktionen, wie sie z. B. bei Ketten von Tiefpässen und mehrstufigen reaktionskinetischen Prozessen vorkommen. Derartige aufeinanderfolgende Stufen lassen sich als Schemata von Markow-Ketten angeben mit Übergangskoeffizienten $\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n$; bei gleichen Elementen der Kette ist $\alpha_1 = \alpha_2 = \alpha_3 = \cdots = \alpha_n$.

Eine Verallgemeinerung der Profilfunktion (17) ergibt sich, wenn Tiefpässe bzw. Kettenglieder unterschiedlicher Abkling- oder Übergangskoeffizienten α_k vorliegen. Beispielsweise ist eine sukzessive Übertragung von Energie über eine gewisse Anzahl diskreter Stufen denkbar (z. B. Mehrfachstreuung), wobei jeder Übergang durch eine eigene Halbwertszeit bzw. mittlere Lebensdauer gekennzeichnet sein kann. In diesem Fall gilt statt (17) die allgemeinere Form einer Profilfunktion

$$P_{\mathbf{P};\alpha_1,\alpha_2,\cdots\alpha_n} = \prod_{k=1}^n \frac{1}{1 + \left(\frac{\omega}{\alpha_k}\right)^2}.$$
(18)

In weiterer Verallgemeinerung kann ein umfangreiches Netzwerk von elektronischen Tiefpässen vorliegen, die parallel- und hintereinandergeschaltet sind. Das bedeutet im abstrakten Wahrscheinlichkeitsmodell, daß sich im Reaktionssystem des Originalraumes Wechselwirkungsprozesse gemäß Sowohl-als-auch und gemäß Entwederoder-Wahrscheinlichkeiten superponieren. Das würde im Frequenzraum einer multiplikativen und additiven Verknüpfung von Frequenzverteilungen entsprechen, so daß an Stelle von (18) ein allgemeinerer Ausdruck der Form

$$P = \frac{a_1}{\left(1 + \left(\frac{\omega}{\alpha_1}\right)^2\right)^{n_1}} + \frac{a_2}{\left(1 + \left(\frac{\omega}{\alpha_2}\right)^2\right)^{n_2}} + \frac{a_3}{\left(1 + \left(\frac{\omega}{\alpha_3}\right)^2\right)^{n_3}} + \dots + \frac{a_k}{\left(1 + \left(\frac{\omega}{\alpha_k}\right)^2\right)^{n_k}}.$$
 (19)

oder

$$P = \sum_{1}^{k} \prod_{1}^{i} \frac{a_{ik}}{\left(1 + (\frac{\omega}{\alpha_{ik}})^{2}\right)^{n_{ik}}}.$$
 (20)

treten würde. Dieser mathematische Formalismus kann – in einfacher Form der Gl. (11) – auf die makroskopische Verteilungskurve der Intensität z. B. einer Spektrallinie oder eines magnetischen Kernresonanz-Signals (NMR) übertragen werden, so daß ein (abstraktes) Modell eines Netzwerkes elektronischer Tiefpässe – bzw. eines

statistischen Reaktionssystems – auch zur Analyse der Linien angewendet werden kann. Beispiele für derartige Linienformanalysen sind von MELCHER und GERTH in [7] gegeben.

Es läßt sich bei solchen Linienformanalysen zeigen, daß mit Hilfe von (11) Voigt-Profile approximiert bzw. ersetzt werden können. Im Gegensatz zu einer Aussage von BORN: "Die Ableitung der Voigtschen Formel ist aber anfechtbar, die Formeln selbst sind verwickelt und undurchsichtig." ([6], S. 484) – ist die Lorentz-Funktion *n*-ten Grades (11) leichter handhabbar als die allgemeine Lorentz-Funktion in der Form (18) oder gar (19) bzw. (20).

Die Beziehung (18), die für die Frequenztransmission eines Filters (Absorbers) gilt, ergibt sich auch aus der *Laplace*-Transformation einer als Matrizengleichung geschriebenen analytischen Darstellung für das zeitliche Verhalten einer kinetischen Reaktionskette; s. [5], dort Gl. (58). Das aber bedeutet, daß eine Profilfunktion (im Frequenzraum) durch Prozesse reaktionskinetischer Art im Originalraum zustande kommt.

Literatur

- AMBARZUMJAN, V. A.: Theoretische Astrophysik. Berlin: VEB Deutscher Verlag der Wissenschaften 1957.
- [2] UNSÖLD, A.: Physik der Sternatmosphären. 2. Aufl. Berlin/Göttingen/Heidelberg: Springer-Verlag 1955.
- [3] POOLE, C. P.: Electron Spin Resonance. New York/London/Sidney: Interscience Publishers John Wiley & Sons 1967.
- [4] MELCHER, H.: Transmission und Absorption. Berlin: VEB Deutscher Verlag der Wissenschaften 1970.
- [5] MELCHER, H., GERTH, E.: Behandlung von Strahlungstransportproblemen mit Matrixfunktionon. –
 Wiss. Z. Pädagog. Hochschule "Dr. Theodor Neubauer" Erfurt/Mühlhausen, Math.-Naturwiss. Reihe 8 (1972) Heft l, S. 3.
- [6] BORN, M.: Optik. Berlin: Springer-Verlag 1965.
- [7] MELCHER, H., GERTH, E.: Darstellung von Linienprofilen durch *Lorentz*-Funktionen *n*-ten Grades. –
 Exper. Techn. Phys. 25 (1977) 527

A Heuristic Model for Spectral-Line-Profiles

Horst Melcher¹ and Ewald Gerth²

¹ Pedagogic College "Dr. Theodor Neubauer", Erfurt-Mühlhausen, GDR

² Central Institute for Astrophysics of the Academy of Sciences of the GDR, Potsdam

Abstract

By means of the Fourier-transformation for the statistical *Poisson*distribution a function y(x) is obtained, which is called in this paper *Lorentz*-function of the *n*-th degree:

 $y = (1 + x^2)^{-n}$.

Special cases such as n = 1 or $n \to \infty$ are used for representing types of spectral lines: the *Lorentz*- or dispersion-type and the *Gauss*-type, resp. Up to now the region between these two types has been represented by the so-called *Voigt*-function. The new general *Lorentz*-function is suitable for approximating or replacing the complicated *Voigt*-function.

The general *Lorentz*-function is based upon an abstract model which is valid for processes in kinetic systems or in electronic networks.

Publication

Zeitschrift für experimentelle Technik der Physik, Band 25, 1977, S. 521–525. Eingegangen am 7. 4. 1977

Journal for Experimental Techniques of Physics Volume 25, 1977, p. 521–525. Received 1977, April 7th

Article available in German by the web-address: www.ewald-gerth.de/47.pdf

Darstellung von Linienprofilen durch Lorentz-Funktionen n-ten Grades¹

Представление профилей линий с помощью функций Лоренца степени п

Representation of Spectral-Line-Profiles by Means of the Lorentz-Function of the *n*-th Degree

Von H. MELCHER und E. GERTH, Potsdam

Eingegangen am 7. 4. 1977

Zusammenfassung

Es wird gezeigt, daß für Linienformanalysen eine anpassungsfähige Lorentz-Funktion n-ten Grades verwendet werden kann. Multiplikative und/oder additive Verknüpfungen von Lorentz-Funktionen können wiederum durch eine Lorentz-Funktion n-ten Grades approximiert werden. Für das Analyseverfahren werden geeignete Tabellen zur Bestimmung von n mitgeteilt.

Eine Gegenüberstellung von Werten der *Voigt*-Funktion und der *Lorentz*-Funktion *n*-ten Grades zeigt, daß die *Voigt*-Funktion durch die *Lorentz*-Funktion *n*-ten Grades angepaßt bzw. ersetzt werden kann. Bei Linien mit relativ breiten Flügeln ist n < 1; in diesem Fall kann gefolgert werden, daß eine solche Linie aus mehreren Komponenten zusammengesetzt ist. Rückschlüsse von der im Frequenzraum makroskopisch gemessenen Verteilungskurve auf Art und Zahl der (statistischen) Elementarprozesse oder Wechselwirkungsakte im Originalraum sind nicht eindeutig.

Резюме

Показано, что для анализа формы линии можно воспользоваться приспособляемой функцией Лоренца степени *n*. Сложные и многократные композиции функций Лоренца можно опять аппроксимировать функцией Лоренца степени *n*. Для метода анализа и определения значения *n* приведены соответственные таблицы.

Противоноставление значений функции Фохта и функции Лоренца степени n показывает, что функцию Фохта можно аппроксимировать или даже заменить функцией Лоренца степени n. Для линий с относигельно широкими крыльями n < 1; в этом случае можно заключить, что такая линия состоит из нескольких компонентов. Выводы, сделанные на основании макроскопически измеренной кривой распределения в частотном пространстве, с виде и числе элементарных процессов не являются однозначными.

Abstract

It will be shown how to fit the *Lorentz*-function of the *n*-th degree to profiles of spectral lines. Some examples are given for analyzing profiles by a new method, called the "cutting-method".

Values of the *Voigt*-function are compared with those of the general *Lorentz*-function (of the n-th degree). It seems to be impossible to differentiate these two functions by means of experimental methods. The results of the analysis of profiles yielding n < 1 may be due to those profiles being composed of two or more components.

Einleitung

Profile symmetrischer Spektrallinien lassen sich häufig durch *Voigt*-Funktionen anpassen, die sich durch Faltung einer $Gau\beta$ -Funktion mit einer Lorentz-Funktion (ersten Grades) ergeben. In der Arbeit [1] wurde gezeigt, daß sich Profilfunktionen aus Produkten und/oder Summen von allgemeinen *Lorentz*-Funktionen darstellen lassen:

$$P_{\rm L} = \sum_{1}^{k} \prod_{1}^{i} \frac{a_{ik}}{\left(1 + \left(\frac{\omega}{\alpha_{ik}}\right)^2\right)^{n_{ik}}} \tag{1}$$

¹Abstract: www.ewald-gerth.de/48abs.pdf - attached at the end of this article (page 88).

In Gl. (1) bedeuten ω die Frequenz, α_{ik} die Übergangskoeffizienten bzw. Halbwertsgrößen und die a_{ik} die maximalen Werte (Scheitel) des jeweiligen Profils. Für hintereinander ablaufende Stufenprozesse im Modell eines reaktionskinetischen Systems gilt der Produktausdruck

$$P_{\rm L} = \frac{1}{\prod\limits_{1}^{i} \left(1 + \left(\frac{\omega}{\alpha_k}\right)^2\right)}.$$
(2)

Nachstehend soll die einfache Form $P_{L} \equiv y$ mit *n* gleichen Halbwertsgrößen $x_{0,5}$ für die Darstellung von Linienprofilen verwendet werden,

$$y = \frac{1}{\left(1 + \left(\frac{x}{x_{0,5}}\right)^2\right)^n}.$$
(3)

Diese Gleichung kann man als *Lorentz*-Funktion *n*-ten Grades bezeichnen, die für n = 1 in die (übliche) *Lorentz*-Funktion ersten Grades und für $n \to \infty$ in die *Gauß*-Funktion übergeht; man erhält sie auch als *Fourier*-Transformierte der *Poisson*-Funktion [1].

Offensichtlich werden durch (3) Kurvenverläufe, d. h. Profilformen, beschrieben, die in den Bereich der *Voigt*-Funktion fallen. Überdies lassen sich aber auch für n < 1 Profile mit sehr breiten Flügeln darstellen.

Zweifellos sind die Voraussetzungen der *Voigt*-Funktion nicht in allen Analysefällen erfüllt, so daß sich eine einfacher zu handhabende Funktion (3) als praktisch erweisen kann. Im Hinblick auf die abstrakte Modellvorstellung von im Originalraum hintereinander und nebeneinander ablaufenden Stufen- oder Kettenprozessen könnte der Gl. (3) [bzw. Gl. (1)] eine weitergehende Bedeutung zukommen als nur die einer bequemen Approximations- oder Interpolationsformel. Die Beziehungen (1), (2) und (3) können als Wahrscheinlichkeitsausdrücke (Verteilungskurven) aufgefaßt werden.

Im folgenden werden Kurvenanpassungen mit Lorentz-Funktionen n-ten Grades durchgeführt, an Hand einiger Beispiele näher erläutert und mit Werten von Voigt-Funktionen verglichen.

1 Das Verfahren zur Linienformanalyse

Der Funktionsverlauf (3) ist für verschiedene *n*-Werte in Abb. l dargestellt. Die (halbe) Halbwertsbreite $x_{0,5}$ der Linie ergibt sich für y = 0, 5, die (halbe) Zehntelwertsbreite $x_{0,1}$ für y = 0, 1 usw. Bei der Analyse ist in jedem Fall der maximale *y*-Wert y_{max} (an der Stelle x = 0) y = 1.

Für die Kurven Nr. 1, 5 und 6 ist $x_{1,5} = 1$ gewählt, ebenso für die Kurvenparameter n = 0, 5 und n = 0.25. In dem gestrichelten Bereich würden die *Voigt*-Funktionen verlaufen. In diesem Bereich liegen aber auch die *Lorentz*-Funktionen für $1 \le n < \infty$. Oberhalb von n = 1 (für x > 1) verlaufen die Kurven für n < 1; sie weisen relativ breite Flanken auf.

Mit wachsenden n-Werten fallen die Kurven rascher ab, und der Unterschied zwischen der $Gau\beta$ -Funktion und einer Lorentz-Funktion hohen Grades wird zunehmend geringer. Am deutlichsten treten die Unterschiede der n-Werte in den Kurvenausläufern hervor.

Tabelle 1

n	$x_{0,1}/x_{0,5}$	$x_{0,05}/x_{0,5}$	x _{0,01} /x _{0,5}	x_{H}
0,10	$3,126526999\cdot 10^3$	$1,000488642\cdot 10^{5}$	$3,126526999\cdot 10^8$	31,984 371 17
0,20	$5,679589956 \cdot 10$	$3,212876817\cdot 10^2$	$1.796053020\cdot 10^4$	5,567764364
0,30	$1,540061391 \cdot 10$	$4.890412665 \cdot 10$	$7.149990561 \cdot 10^{2}$	3.013199029
0,40	8,227462463	$1,959384866\cdot 10$	$1,465384208\cdot10^2$	2.157974571
0,50	5,744562648	$6,153256260\cdot 10$	$5,773214000\cdot10$	1,732050807
0,60	4,569766762	8,203575843	$3,146704640\cdot 10$	1,474721026
0,70	3,907167846	6,487 905 565	$2,061080404 \cdot 10$	1,300692272
0,80	3,489331725	5,473411187	$1,512245700\cdot 10$	1.174058870
0,90	3,204827919	4,815227787	$1,195512361\cdot 10$	1,077 088 426
1,00	3,000000000	4,358 898 945	9,949874374	1,000000000
1,25	2,676646877	3,670696386	7,236642144	0,860872305
1,50	2,489878152	3,292579847	5,913965812	0,766420931
1,75	2,369050170	3,056140120	5,151032993	0,697132906
2,00	2,284775713	2,895250891	4,661321925	0,643594253
2,25	2,222771193	2,779077397	4,323023918	0,600657973
2,50	2,175298081	2,691432365	4,076514659	0,565250308
2,75	2,137813856	2,623047422	3,889487615	0,535410962
3,00	2,107482407	2,568251699	3,743042239	0,509824529
3,25	2,082444231	2,523388912	3,625437694	0,487571826
3,50	2,061430663	2,485999620	3,529021022	0,467988947
3,75	2,043547149	2,454370541	3,448603004	0,450582996
4,00	2,028145175	2,427 272 598	3,380547160	0,434979442
4,25	2,014743318	2,403 801 747	3,322233047	0,420887983
4,50	2,002976810	2,383278547	3,271726685	0,408079698
4,75	1,992564304	2,365182710	3,227570853	0,396371337
5,00	1,983285337	2,349109176	3,188647436	0,385614257
5,25	1,974964768	2,334738019	3,154084760	0,375686452
5,50	1,967461695	2,321813215	3,123193514	0,366486728
5,75	1,960 661 497	2,310127496	3,095421649	0,357930356
6,00	1,954470006	2,299511313	3,070322006	0,349945779
6,25	1,948809108	2,289824603	3,047528572	0,342472098
6,50	1,943613508	2,280950710	3,026739006	0,335457115
6,75	1,938828180	2,272791665	3,007 701 375	0,328855798
7,00	1,922951152	2,265264611	2,990 204 128	0,322629066
7,25	1,930308413	2,258298997	2,974068334	0,316742812
7,50	1,926499846	2,251834373	2,959141633	0,311167126
7,75	1,922951152	2,245818660	2,945293532	0,305875643
8,00	1,919636636	2,240206741	2,932411588	0,300845032
8,25	1,916533889	2,234959352	2,920398437	0,296054551
8,50	1,913623241	2,230042117	2,909169292	0,291 485 701
8,75	1,910887425	2,225424895	2,898650083	0,287121911
9,00	1,908311152	2,221 081 070	2,888775722	0,282948297
10,00	1,899351690	2,206 005 948	2,854672772	0,267905698
20,00	1,860121373	2,140577023	2,709666624	0,187789574
30,00	1,847431442	2,119617441	2,664259514	0,152885225
40,00	1,841157498	2,109292456	2,642079438	0,132210786
50,00	1,837415643	2,103 146 403	2,628 935 716	0,118150243
100,00	1,829 982 347	2,090963521	2,603 012 726	0,083 399 940
∞	$\sqrt{\ln 10/\ln 2}$ = 1,822615729	$\sqrt{\ln 20/\ln 2}$ = 2,078924745	$\sqrt{\ln 100/\ln 2}$ = 2,577 567 883	

Zur Ermittlung von n bestimmt man aus der experimentellen Kurve am günstigsten $x_{0,1}$ und $x_{0,5}$. Der Quotient ist gemäß Gl. (3)

$$\frac{x_{0,1}}{x_{0,5}} = \sqrt{\frac{\sqrt[n]{10} - 1}{\sqrt[n]{2} - 1}},\tag{4}$$

worin n in impliziter Form enthalten ist. Man entnimmt n aus Tabelle l, die sich bequem mit Hilfe eines elektronischen Taschenrechners aufstellen läßt.

Der Exponent n kann auch durch numerische Inversion der Gl. (4) iterativ nach dem Newtonschen Näherungsverfahren bestimmt werden. Für $n \to \infty$ ergibt sich

$$x_{0,1}/x_{0,5} = \sqrt{\ln 10/\ln 2}.$$
 (5)

Als Kriterium dafür, daß exakt eine *Lorentz*-Funktion *n*-ten Grades vorliegt, verwendet man weitere Quotienten gemäß Gl. (4), um festzustellen, ob n = const ist. Verfügt man beispielsweise in den Kurvenausläufen noch über die Werte $x_{0,05}$ und $x_{0,01}$, so bestimmt man die Quotienten

$$\frac{x_{0,05}}{x_{0,5}} = \sqrt{\frac{\sqrt[n]{20} - 1}{\sqrt[n]{2} - 1}} \tag{6}$$

bzw.

$$\frac{x_{0,01}}{x_{0,5}} = \sqrt{\frac{\sqrt[n]{100} - 1}{\sqrt[n]{2} - 1}} \tag{7}$$

und entnimmt die zugehörigen n-Werte den Spalten 3 und 4 der Tabelle 1.

Im Hinblick auf Gl. (5) findet man nunmehr für $n \to \infty$

$$x_{0,1}/x_{0,5} = \sqrt{\ln 20/\ln 2} \tag{8}$$

bzw. in bezug auf (7)

$$x_{0,1}/x_{0,5} = \sqrt{\ln 100/\ln 2}.$$
(9)

Im Fall, daß n nicht konstant ist, kann man für die Kurvenanpassung gemäß (4) erforderlichenfalls n etwas variieren, was ebenfalls mit einem elektronischen Taschenrechner bequem durchzuführen ist.

Mit diesem Verfahren der Linienprofil-Analyse kann man also rasch entscheiden, ob ein *Gauß*- oder *Lorentz*-Profil ersten Grades vorliegt: Man mißt die (halbe) Zehntelwertsbreite sowie die (halbe) Halbwertsbreite. Ergibt daraus der Quotient den Wert 1,8226..., so handelt es sich um ein *Gauß*-Profil; für den Quotienten 3,0000... folgt n = 1, also das übliche *Lorentz*-Profil (Tab. 1, Spalte 2).

In der gleichen Weise führt der Quotient $x_{0,05}/x_{0,5} = 2,0789$ auf ein $Gau\beta$ -Profil und $x_{0,05}/x_{0,5} = 4.3589$ auf ein *Lorentz*-Profil ersten Grades. Messungen der (halben) Hundertstelwertsbreite ergeben – ins Verhältnis zur (halben) Halbwertsbreite gesetzt – bei der $Gau\beta$ -Kurve den Quotienten 2,5776... und bei der *Lorentz*-Kurve ersten Grades 6,2449... (s. Tab. 1, Spalte 3 bzw. 4).

Die Spalten Nr. 2, 3, 4 der Tabelle 1 werden simultan angewendet, um zu entitheiden, ob ein Profil durch einen einheitlichen *n*-Wert darstellbar ist. In diesem Fall mißt man stets die drei Breiten $x_{0,1}$, $x_{0,05}$ und $x_{0,01}$ – außerdem $x_{0,5}$. Ist *n* dann für alle drei Quotienten (4). (6) und (7) gleich, so liegt exakt eine *Lorentz*-Funktion des Grades *n* vor.

Selbstverständlich kann der *n*-Wert bei diesen *Lorentz*-Funktionen auch durch Quotienten anderer Halbbreiten (z. B. $x_{0,8}/x_{0,2}$) bestimmt werden, wofür man dann weitere Spalten in Art von 2. 3 oder 4 berechnet.

Das Analyseverfahren wird noch durch folgende Beispiele erläutert. Messungen am Profil ergeben $x_{0,1} = 2,0796$ und $x_{0,5} = 0,9102$. Für den Quotienten $x_{0,05}/x_{0,5} = 2,2848$ entnimmt man aus der Spalte 2 der Tabelle 1 den Wert n = 2 und aus Spalte 5 $x_{Hx_H} = \sqrt{\sqrt[n]{2} - 1}$, also $x_{Hx_H} = 0,6436$. Damit ergibt sich für die *Lorentz*-Funktion $y = [1 + (x \cdot x_H/x_{0,5})^2]^{-n}$. also $y = [1 + 0,5000x^2]^{-2}$.

Es liegt exakt eine Lorentz-Funktion zweiten Grades vor, da die Quotienten $x_{0,05}/x_{0,5} = 2,89525$ und $x_{0,01}/x_{0,5} = 4,66132$ jeweils auf denselben Wert n = 2 führen.

2 Approximation allgemeiner *Lorentz*-Funktionen durch *Lorentz*-Funktionen *n*-ten Grades

Wenn sich für die verschiedenen Quotienten (4), (6) oder (7) unterschiedliche *n*-Werte ergeben, so kann dieser Sachverhalt darauf hindeuten, daß an Stelle der *Lorentz*-Funktion *n*-ten Grades (3) eine allgemeine *Lorentz*-Funktion (2) oder (1) vorausgesetzt werden muß. In der nachstehenden Tabelle 2 werden Beispiele angeben, wonach Produktfunktionen (2) in befriedigender Weise mit Hilfe von (3) approximiert werden können; hierbei ergeben sich im allgemeinen gebrochene *n*-Werte. Es gilt also

$$y = \frac{1}{\prod_{i=1}^{m} \left[1 + \left(\frac{x}{\alpha_i}\right)^2\right]} \xrightarrow{\text{appr:}} \frac{1}{[1 + (x, x)^2]^n},$$
(10)

wobei x_r den Quotienten der (halben) Halbbreite x_H für den betreffenden *n*-Wert und der Halbbreite der Produktfunktion $x_{0,5}$ bedeutet,

$$x_{\rm r} = x_{\rm H} / x_{0,5}.$$
 (11)

Es läßt sich zeigen, daß für die Grenzlagen $/\alpha \to 0$ und $/\alpha \to \infty$ ein Produkt von *Lorentz*-Funktionen wieder eine *Lorentz*-Funktion ergibt. Das Übergangsgebiet wird durch mittlere Werte von n und α approximiert.

Tabelle 2

Nr.	Produktfunktion	$\xrightarrow{\text{approx.}} \text{Lorentz-Funktion } n\text{-ten Grades}$
1	$[(1 + x^2)(1 + 4x^2)]^{-1}$	$[1 + (1, 6829x)^2]^{-1,7}$
2	$[(1 + x^2)(1 + x^2/4)]^{-1}$	$[1 + (0,8299x)^2]^{-1,75}$
3	$[(1 + x^2) (1 + x^2/2) (1 + x^2/4) (1 + x^2/8)]^{-1}$	$[1 + (0,7861x)^2]^{-3}$
4	$[(1+x^2)(1+2x^2)(1+4x^2)(1+8x^2)]^{-1}$	$[1 + (2, 2233x)^2]^{-3}$
5	$[(1 + x^2)^2 (1 + 4x^2)^2]^{-1}$	$[1 + (1,7183x)^2]^{-3,35}$
6	$[(1 + x^2)^2 (1 + x^2/4)^2]^{-1}$	$[1 + (0,8584x)^2]^{-3,35}$

Aus den Beispielen Nr. 3 und Nr. 4 der Tabelle 2 ist ersichtlich, daß man bei der Analyse von Leistungskurven im Falle elektronischer Tiefpässe [1] auf das Vorhandensein dreier gleichartiger hintereinandergeschalteter Tiefpässe schließen würde, obgleich realiter vier verschiedene Tiefpässe vorliegen. Das gilt auch analog für die Beispiele Nr. 5 und Nr. 6 der Tabelle 2.

Es ist also angezeigt, mit größter Vorsicht und mit größten Vorbehalten aus Messungen makroskopischer Verteilungskurven (Intensitäten) Rückschlüsse auf die mikrophysikalischen Vorgänge zu ziehen und Aussagen über die Einzelprozesse oder über Zahl und Art von Wechselwirkungen machen zu wollen. Derartige Aussagen verstehen sich selbstverständlich allein innerhalb der Gültigkeitsgrenzen des zugrunde gelegten Modells (und der jeweiligen Meßgenauigkeit), wobei die Meßergebnisse durchaus nicht mit Sicherheit das vorausgesetzte Modell bestätigen können. So können beispielsweise Meßergebnisse eo ipso sowohl mit dem einen (*Voigt*-Funktion) also auch mit dem anderen Modell, das zur allgemeinen *Lorentz*-Funktion führt, übereinstimmen.

3 Additive und multiplikative Zusammensetzung von *Lorentz*-Funktionen

Praktische Analysen von Linienformen sowohl bei optischen Spektrallinien [2] als auch bei Kernresonanzspektren [3] führen auch zu Werten n < 1. Dieser Sachverhalt kann darauf hindeuten, daß sich in diesem Fall zwei oder mehrere Komponenten additiv zu der resultierenden Meßkurve zusammensetzen. Das gilt für Komponenten gleicher sowie ungleicher maximaler *y*-Werte. In der nachstehenden Tabelle 3 sind einige Beispiele für n < 1 aufgeführt.

Tabelle 3

Nr.	Summenfunktionapp	$\xrightarrow{\text{prox.}} \text{Lorentz-Funktion } n\text{-ten Grades}$	_
1	$(1 + x^2)^{-1} + (1 + 4x^2)^{-1}$	$[1 + (1,5274x)^2]^{-0.9}$	
2	$(1 + x^2)^{-1} + (1 + x^2/4)^{-1}$	$[1 + (0,8273x)^2]^{-0,8}$	
3	$(1 + x^2)^{-1} + (1 + 16x^2)^{-1}$	$[1 + (2,7603x)^2]^{-0,65}$	
4	$(1 + x^2)^{-1} + (1 + x^2/16)^{-1}$	$[1 + (0,6901x)^2]^{-0,65}$	
5	$(1 + x^2)^{-1} + (1 + 2x^2)^{-1} + (1 + 3x^2)^{-1} + (1 - 3x^2)^{-1}$	$+ 4x^2)^{-1} [1 + (1,5942x)^2]^{-0,91}$	
6	$(1 + x^2)^{-1} + (1 + x^2/4)^{-1} + (1 + x^2/16)^{-1}$	$[1 + (0,5174x)^2]^{-0,61}$	
	$+ (1 + x^2/64)^{-1}$		

Die Analysen der Summenfunktionen ergeben, daß eine solche Funktion nur durch einen mittleren *n*-Wert (sowie eine mittlere Halbwertsbreite) angenähert werden kann. Beispielsweise liefert die Analyse für die Summenfunktion Nr. 5 (Tabelle 3) gemäß den Quotienten der Gl. (4), (6) und (7) die *n*-Werte 0,91, 0,94 und 0,96. Im allgemeinen ist dem *n*-Wert für $x_{0,1}/x_{0,5}$ der Vorzug zu geben, da $x_{0,05}$ oder $x_{0,01}$ – wenn überhaupt – mit geringerer Genauigkeit aus den Meßkurven zu entnehmen sind.

Die Superposition von *Lorentz*-Funktionen *n*-ten Grades unterschiedlicher y_{max} -Werte kann ebenfalls durch eine resultierende *Lorentz*-Funktion approximiert werden. Hierbei ergibt sich, daß dadurch im allgemeinen die resultierende Halbwertsbreite und der resultierende *n*-Wert verändert werden. Das zeigt beispielsweise der Vergleich von

$$(1+x^2)^{-1} + 0, 2(1+4x^2)^{-1} \xrightarrow{\text{approx.}} [1+(1,34x)^2]^{-,95}$$

mit dem Beispiel 1 in der Tabelle 3.

Verknüpft man additiv die Beispielfunktionen Nr. 3 und Nr. 5 der Tabelle 2 mit der Funktion Nr. 6 der Tabelle 3. so erhält man

$$y = [1 + (3, 3127x)^2]^{-0,4}.$$
(12)

Dieser Ausdruck (12) steht näherungsweise für 12 *Lorentz*-Funktionen y (12). Den Werten y (12) werden die gemäß Gl. (12) errechneten Werte in der nachstehenden Tabelle 4 gegenübergestellt.

x	0,1	0,2	0,3	0,4	0,5	0,6	0,65143	0,7
$\frac{1}{y(12)}$	$0,9624 \\ 0,9592$	0, 8703 0,8645	0,7633 0,7597	0,6673 0,6666	0,5895 0,5899	0,5272 0,5274	0,5000 0,5000	$0,4768 \\ 0,4766$
x	1,0	2,0	4,8565	9,0550	-			
$\frac{1}{y(12)}$	0,3708 0,3704	0,2225 0,2183	0,1000 0,1082	$0,0500 \\ 0,0658$				

Tabelle 4

Für bessere Anpassungen kommen Verfahren zur nichtlinearen Approximation [4] in Frage; in diesem Fall werden dann Rechenprogramme eingesetzt, z. B. [5].

Innerhalb der Zeichen- und Meßgenauigkeit stimmen die "Meßwerte" y (12) mit den approximierten y-Werten des extremen Beispiels (Tabelle 4) gut überein. Diese Komposition aus 12 *Lorentz*-Funktionen zeigt, daß multiplikative und additive Verknüpfungen – analog der Zusammensetzung aus Sowohl-als-auch- und Entwederoder-Wahrscheinlichkeiten – zu Verbreiterungen glockenförmiger Kurven führen, die – approximativ – Linienprofile darstellen können. Das abstrakte Modell eines Systems in Art kinetischer Reaktionsabläufe und die damit verbundenen Wahrscheinlichkeitsausdrücke für statistische Verteilungskurven eröffnen möglicherweise eine allgemeinere Anwendbarkeit und Anpassungsfähigkeit als die *Voigt*-Funktion, die sich aus der Faltung der *Gauß*-Funktion und der *Lorentz*-Funktion ersten Grades ergibt. Solche Faltungen können auch mit Hilfe allgemeiner *Lorentz*-Funktionen oder *Lorentz*-Funktionen n-ten Grades durchgeführt werden.

4 Beispiele für Linienformanalysen

Im allgemeinen ist nicht bekannt, aus wieviel Lorentz-Faktoren oder/und Lorentz-Summanden eine resultierende Meßkurve zusammengesetzt ist, so daß für Zwecke der Approximation eine Lorentz-Funktion *n*-ten Grades für die nachstehenden Analysebeispiele vorausgesetzt werden soll.

Von historischem Interesse sei zunächst die Analyse der roten Lithium-Linie und der beiden gelben Natrium-Linien von W. VOIGT [6]. VOIGT fand, daß die Meßkurven zwischen den Grenzfällen der *Gauß*- und der *Lorentz*-Kurve (ersten Grades) liegen. Er approximierte die Meßkurven durch folgende Beziehung:

$$y = \frac{\arctan a/x^2 - b}{\arctan a - b}.$$
(13)

VOIGT bemerkt zu diesem Ausdruck: "Derselbe bietet natürlich durch die drei in ihm auftretenden Parameter von vornherein mehr Hilfsmittel zur Darstellung der Erfahrung. Ich habe für die drei Kurven in den Tafeln diese Parameter durch Probieren bestimmt ... "

Für die rote Li-Linie gibt VOIGT die Parameter a = 143, b = 65 an, für Na-D₁ findet er a = 36, b = 26 und für Na-D₂ schließlich a = 48, b = 32.

Bei der Voigtschen Kurvenanpassung fällt auf, daß die Meßkurven für Werte bis etwa $x_{0,4}$ gut wiedergegeben werden, daß aber zu den weiteren Flügelausläufern die Meßkurve rascher abfällt als die Anpassungskurve (13). Aus der nachstehenden Tabelle 5 ist ersichtlich, daß die *Lorentz*-Funktion *n*-ten Grades, die als Anpassung an die Voigt-Funktion speziell für den *n*-Wert aus $x_{0,1}/x_{0,5}$ gewählt wurde, ebenfalls für große *x*-Werte rascher abklingt; damit liegt es nahe, eine *Lorentz*-Funktion *n*-ten Grades für die drei klassischen Linienanpassungen zu bestimmen.

Als Darstellung gemäß Gl. (10) findet man

für die rote Li-Linie n = 3,3 und $x_r = 0,336$,

für die D₁-Linie (Na) n = 2,4 und $x_{\rm r}$ = 0,681,

für die D₂-Linie (Na) n = 2,5 und $x_r = 0,581$.

	Tabelle 5		
Voigt-Profile und	Lorentz-Funktion	n-ten	Grades

						Rec	luzierte Or	dinate (y	= 1 für x	= 0)				
β_2/β_1	β_2/h	β_1/h	n	0,9	0,8	0,7	0,6	0,4	0,3	0,2	0,1	0,05	0,02	0,01
= η						R	eduzierte I	Linienbrei	$x_{0.5} =$	1)				
0,00	0,60	0,000			0,57	0,72	0,86	1,15	1,32	1,52	1,82	2,08	2,38	2,58
			∞	0,3899	0,5674	0,7173	0,8585	1,1498	1,3179	1,5238	1,8226	2,0789	2,3757	2,5776
0,04	0,59	0,025			0,56	0,72	0,86	1,15	1,33	1,53	1,84	2,12	2,49	2,82
		0.070	42,63	0,3885	0,5658	0,7159	0,8575	1,1513	1,3219	1,5320	1,8400	2,1074	2,4214	2,6380
0,09	0,57	0,050	15.00	0.9069	0,50	0,71	0,86	1,15	1,33	1,04	1,87	2,19	2,03	3,13
			15,92 F	0,3805	0,5647	0,7135	0,8569	1,1000	1,0287	1,5401	1,8700	2,1370	2,3019	2,7400
0.14	0.55	0.075	TC .	0,0070	0,5047	0,7148	0,8508	1,1520	1,3204	1,5454	1,8757	2,1803	2 79	3,115
0,14	0,00	0,075	9.92	0.3841	0.5607	0.7112	0.8545	1,1563	1 3353	1,5601	1.9000	2.2071	2,5845	2.8571
0.19	0.54	0.100	0,02	0,0011	0.56	0.71	0.86	1,16	1.34	1.57	1,94	2.34	3,00	4.08
0,10	0,	.,	6,69	0.3813	0,5574	0,7083	0,8525	1,1596	1,3440	1,5784	1,9400	2,2748	2,6980	3,0124
			E	0,3850	0,5614	0,7117	0,8546	1,1560	1,3361	1,5665	1,9371	2,3302		4,044
0,24	0,52	0,125			0,56	0,71	0,86	1,17	1,34	1,59	1,98	2,42	3,24	4,58
			5,095	0,3787	0,5543	0,7054	0,8507	1,1627	1,3524	1,5966	1,9800	2,3434	2,8152	3,1750
0,30	0,50	0,150			0,55	0,71	0,85	1,17	1,35	1,60	2,02	2,54	3,52	5,05
			4,15	0,3761	0,5513	0,7026	0,8489	1,1658	1,3607	1,6144	2,0200	2,4130	2,9362	3,3450
0,36	0,48	0,175			0,55	0,70	0,85	1,17	1,36	1,62	2,06	2,64	3,80	5,50
			3,52	0,3736	0,5484	0,7000	0,8471	1,1688	1,3689	1,6321	2,0600	2,4835	3,0608	3,5225
0,43	0,46	0,200	0.05	0.0510	0,55	0,70	0,85	1,18	1,37	1,64	2,10	2,75	4,14	a,96
			3,07	0,3713	0,5456	0,6974	0,8404	1,1718	1,3769	1,0495	2,1000	2,0048	3,1891	5,7070
0.51	0.44	0.005	ы	0,3785	0,5538	0,7039	0,8497	1,1000	1,3018	1,0284	2,1107	2,7017	4.44	5,710 6.40
0,51	0,44	0,225	9 669	0.2694	0,54	0,70	0,65	1,10	1,38	1,00	2,15	2,6452	3 3545	3 9496
0.59	0.49	0.950	2,005	0,3084	0,5422	0,0945	0.84	1,1755	1,3800	1.68	2,1500	2,0452	4 73	6 78
0,35	0,42	0,200	2 4 1 6	0.3663	0.5396	0,6919	0.8418	1,1781	1.3943	1,6880	2,1900	2,7185	3,4909	4,1517
0.69	0.40	0.275	2,110	0,0000	0.53	0.69	0.84	1.19	1.40	1.71	2.24	3.12	5,03	7.15
0,	0,	0,=10	2,173	0,3663	0,5365	0,6890	0,8398	1,1815	1,4037	1,7089	2,2400	2,8112	3,6665	4,4152
0,79	0,38	0,300	_,	-,	0,53	0,69	0,84	1,19	1,41	1,74	2,29	3,26	5,32	7,52
			1,982	0,3611	0,5335	0,6862	0,8380	1,1848	1,4129	1,7296	2,2900	2,9051	3,8476	4,6907
			E	0,3702	0,5437	0,6940	0,8434	1,1779	1,4006	1,7191	2,3751	3,2876		7,223
0,92	0,35	0,325			0,53	0,68	0,84	1,19	1,42	1,77	2,34	3,39	5,57	7,86
			1.827	0,3587	0,5306	0,6836	0,8362	1,1880	1,4219	1,7500	2,3400	3,0003	4,0342	4,9783
1,07	0,33	0,350			0,52	0,68	0,84	1,20	1,44	1,81	2,40	3,54	5,83	8,21
			1,676	0,3559	0,5273	0,6804	0,8341	1,1918	1,4325	1,7742	2,4000	3,1161	4,2654	5,3396
1,26	0,33	0,375			0,52	0,68	0,83	1,20	1,45	1,85	2,46	3,70	6,07	8,55
			1,553	0,3533	0,5241	0,6775	0,8321	1,1955	1,4428	1,7981	2,4600	3,2335	4,5044	5,7186
1,50	0,27	0,400	1.4308	0.0100	0,52	0,67	0,83	1,21	1,47	1,88	2,04	0,80 9 9002	0,00	6,60
			1,4205	0,3498	0,5200	0,6736	0,8295	1,2002	1,4003	1,8204	2,0400	3,3920	4,0002	8 628
				0,3074	0,5285	0,0803	0,83376	1,1908	1 45137	1,84919	2,67030	3 81151	6.05566	8.5768
1.83	0.23	0 4 9 5	D_{f}	0,00102	0,52875	0.67	0.83	1.21	1.48	1.92	2,64	4.00	6.55	9.18
1,00	0,20	0,420	1.2903	0.3459	0.5152	0.6691	0.8264	1.2059	1.4726	1.8678	2,6400	3,5953	5,2678	6,9632
2.38	0.19	0.450	1,2000	0,0100	0.51	0.66	0.82	1.22	1.50	1.96	2,74	4,13	6,76	9,50
-,00	~,	-,	1.1877	0.3421	0,5107	0,6648	0,8235	1,2114	1,4885	1,9054	2,7400	3,8023	5,7217	7,7255
			É	0,3476	0,5165	0,6700	0,8263	1,2097	1,4889	1,9219	2,8395	4,0946		9,298
3,54	0,13	0,475			0,51	0,66	0,82	1,22	1,52	1,98	2,87	4,25	6,92	9,77
			1,0827	0,3376	0,5052	0,6596	0,8199	1,2182	1,5084	1,9532	2,8700	4,0773	6,3432	8,7935
∞	0,00	0,500			0,50	0,66	0,82	1,22	1,53	2,00	3,00	4,36	7,00	9,95
			1,000	0,3333	0,5000	0,6547	0,8165	1,2247	1,5275	2,000	3,0000	4,3589	7,0000	9,9499
			0.75	0.3150	0.4775	0.6330	0.8014	1 2548	1 6181	2 2288	3 6766	5,9219	10.9791	17,4568
			0,75	0.2796	0.4330	0.5890	0.7698	1.3229	1,8359	2,8284	5,7946	11.5326	28,8617	57,7321
			0.40	0.2544	0.4005	0.5559	0.7452	1,3811	2,0350	3,4336	8,2275	19,5838	61,6104	146,5384
			0.30	0,2153	0.3487	0,5015	0,7032	1,4918	2,4461	4,8407	15,4006	48,9041	225,2104	714,9991
			0,20	0,1496	0,2573	0,3996	0,6185	1,7658	3,6390	10,0386	56,7959	321,2877	3175,0032	17960,5302
			- ,	, /	,	1. 1. 1. 1. 1.								

Von G. ELSTE [2] wurde das Profil der He-D₃-Linie ($\lambda = 5876\text{\AA}$) durch Voigt-Funktionen approximiert. Das in der Arbeit von ELSTE wiedergegebene Profil kann hinreichend genau auch mit einer Lorentz-Funktion *n*-ten Grades dargestellt werden:

Das von ELSTE in derselben Abbildung angegebene entzerrte Profil läßt sich ebenfalls durch eine Lorentz-Funktion n-ten Grades darstellen:

$$y = [1 + (0,3699x)^2]^{-9}.$$

Des weiteren findet ELSTE [2], daß sich die Krypton-Linie ($\lambda = 5872$ Å durch die Summe zweier Voigt-Funktionen approximieren läßt. Gemäß dem weiter oben angegebenen Analyseverfahren, findet man einen *n*-Wert, der kleiner als 1 ist: n = 0.8. Dieser Sachverhalt kann darauf hindeuten, daß sich das Profil aus einer Summe von Lorentz-Funktionen zusammensetzen läßt. Dieses Profil kann durch $y = [1 + (0.0487x)^2]^{-0.8}$ dargestellt werden; hierbei steht x wiederum für $\Delta\lambda$, das im vorliegenden Fall in mÅ gemessen wird.

Auf einen *n*-Wert, der kleiner als 1 ist, führt auch die Analyse eines Kernresonanzsignals (NMR) [3]. Die Tatsache, daß für $x_{0,1}/x_{0,5}$ n = 0.65 ist. legt den Schluß nahe, daß es sich auch in diesem Fall um eine additive Zusammensetzung von *Lor*entz-Funktionen handeln kann.

Das abstrakt aufzufassende Modell von Stufen- oder/und Verzweigungsprozessen im Originalraum scheint auch geeignet für die Darstellung von Stufenprozessen bei Streuvorgängen (z.B. Mehrfachstreuung) oder für die Streuung von Licht an statistischen thermischen Dichteschwankungen in Flüssigkeiten, der sog. *Brillouin*-Streuung. Es ist deshalb naheliegend, auch *Brillouin*-Linienprofile durch die *Lorentz*-Funktion *n*-ten Grades darzustellen, da für die zu überlagernden Linien nicht immer das übliche *Lorentz*-Profil der Funktion ersten Grades als gegeben vorausgesetzt werden darf. So wurde bei experimentellen und theoretischen Untersuchungen an Tetrachlorkohlenstoff festgestellt, daß die *Brillouin*-Komponenten keine *Lorentz*-Form (ersten Grades) haben [7].

5 Approximation bzw. Ersatz von *Voigt*-Funktionen durch *Lorentz*-Funktionen *n*-ten Grades

Die vorstehende Tabelle 5 bringt einen Vergleich zwischen den Werten der Voigt-Funktion und der mit einem geeigneten *n*-Wert jeweils angepaßten Lorentz-Funktion *n*-ten Grades. In den ersten drei Spalten und den zugehörigen Zeilen sind die Zahlenwerte angegeben, die bei UNSÖLD [8] zu finden sind. In der jeweils darunter stehenden Zeile sind die für den passenden *n*-Wert (Spalte 4) berechneten Werte der Lorentz-Funktion (incl. für y = 0.9) aufgeführt. In den mit E gekennzeichneten Zeilen sind zum weiteren Vergleich die von ELSTE [2] berechneten Funktionswerte angegeben, die für y = 0.2 dort nicht berechnet sind.

Diese Tabelle 5 kann für n < 1 ergänzt werden. Die Übereinstimmung der Unsöld-Tabellenwerte von y = 0.9 bis y = 0.1 mit denen einer Lorentz-Funktion n-ten Grades ist bemerkenswert. Selbstverständlich läßt sich eine bessere Anpassung auch für y < 0,1 vornehmen; allerdings stehen hier mitunter keine Meßwerte oder aber nur Meßwerte mit geringerer Genauigkeit zur Verfügung.

Für den Wert $\eta = \beta_1/\beta_2 = 1,50$ ist zum Vergleich noch eine Zeile D/V eingefügt. Es handelt sich hier um Werte, die von DAVIES und VAUGHAN [9] für Voigt-Profile berechnet wurden. Man erkennt deutliche Abweichungen gegenüber den eine Zeile darüber stehenden Werten von ELSTE [2].

In der graphischen Darstellung (Abb. 1) ist die Kurve 5 der Lorentz-Funktion 4. Grades von der Voigt-Funktion $\eta = 0, 30$ (Tabelle 5) kaum zu unterscheiden. Ebenso kann man die Kurve 2 der Abb. 1 durch ein Voigt-Funktionsprofil mit $\eta = 0.79$ (Tabelle 5) – und umgekehrt – ersetzen.

Abb. 1

Auf einen Vergleich mit weiteren Tabellen wird verzichtet, da hierzu Interpolationen notwendig wären: Die Tabellen von F. HJERTING [10], V. A. AMBARZUMJAN [11], G. D. FINN und MUGGLESTONE [12] sowie die 8stelligen Tafeln von D. G. HUM-MER [13] bringen die zu vorgegebenen x-Werten gehörenden y-Werte, während in der obigen Tabelle 5 -- in Anlehnung an UNSÖLD [8] -- die reduzierten y-Koordinaten vorgegeben sind.

Vergleicht man die Ordinatendifferenzen zwischen der Voigt-Funktion und der Lorentz-Funktion n-ten Grades für die reduzierten Ordinaten 0.05, 0.02 und 0.01 in der Tabelle 5, so bleiben sie unter 1,6%. Dieser Unterschied verringert sich, wenn die *n*-Werte etwas kleiner gewählt werden, wenn sie also auf $x_{0,05}/x_{0,5}$ oder $x_{0,01}/x_{0,5}$ bezogen werden. In der Praxis werden aber die Ordinatenwerte für $x_{0,05}$ oder für $x_{0,01}$ relativ seltener oder zu ungenau bestimmt, so daß $x_{0,1}$ der übliche Bezugspunkt ist.

Es sei noch bemerkt, daß auch die beim Voigt-Profil vorausgesetzte Dopplerbreite gemäß einer Maxwell- bzw. $Gau\beta$ -Verteilung – nicht immer gewährleistet ist. So haben A. V. ELETZKIJ und B. G. FREINKMAN [14] festgestellt, daß in Entladungen u. U. eine erhebliche Abweichung von einer Maxwellverteilung besteht, was eine Abweichung der Spektrallinienform von der allgemein angenommenen Doppler-Linienform bedingt.

Die Genauigkeit der Anpassung von Meßkurven und der daraus zu berechnenden Größen hängt insbesondere von der experimentellen Meßgenauigkeit ab. Größere Schwierigkeiten bereitet dabei der Übergang zum Kontinuum bei Absorptionslinien. Hierdurch können die Halbwertsbreiten zu klein bestimmt werden. Betrachtet man beispielsweise in Abb. l das Profil für n = 0.25, so kann man – ohne Kenntnis des Nullniveaus – das Kontinuum für $x \to \infty$ etwa bei 0.2 = y legen. Das aber führt zu einer fehlerhaften Bestimmung der Halbwertsbreite und damit zu einem größeren n-Wert, nämlich zu $\approx 0, 67$.

In ähnlicher Weise würde man für das Profil mit n = 0.5 – bei einem angenommenen Untergrund bei y = 0, 1 – einen Wert $n \approx 0, 85$ bestimmen. Es ist nicht ausgeschlossen, daß mitunter auf diese Weise zu hohe *n*-Werte bestimmt werden können. Erhält man z. B. bei dieser fehlerhaften Bestimmung des Rauschens (y_{max} also zu klein) einen Wert n = 1, so liegt eben keine reine *Lorentz*-Linie vor, sondern möglicherweise ein Profil, das sich additiv aus mehreren Komponenten zusammensetzen kann; in diesem Fall ist nämlich der resultierende (mittlere) *n*-Wert kleiner als Eins.

Literatur

- MELCHER, H.; GERTH, E.: Ein heuristisches Modell f
 ür Linienprofile. Exper. Technik Physik 25 (1977) 521–525.
- [2] ELSTE, G.: Die Entzerrung von Spektrallinien unter Verwendung von Voigt-Funktionen. – Z. Astrophysik 33 (1953/54) 39-73.
- [3] GÖLZ, E.; ZACHMANN, H. G.: Untersuchungen von teilkristallinem Polyäthylen mit Hilfe der hochauflösenden Kernresonanz. – Kolloid-Z. u. Z. Polymere 247 (1971) 814-819.
- [4] PEIL, J.: Ein Verfahren zur nichtlinearen Approximation und seine Anwendung auf verschiedene naturwissenschaftliche, technische und medizinische Probleme. Nova Acta Leopoldina 35 (1970) Nr. 195.
- [5] BARD, Y.: IBM-Rechenprogramm "Nonlinear parameter estimation and programming".
- [6] VOIGT, W.: Über die Intensitätsverteilung innerhalb einer Spektrallinie. Phys. Z. 14 (1913) 377.
- [7] CAROME, E. F.; NICHOLS, W. H.; KUNSITIS-SWYT, C. R.; SINGAL, S. P.: Ultrasonic and Light-Scattering Studies of Carbon Tetrachloride. J. chem. Phys. 49 (1968) 1013-1017.
- [8] UNSÖLD, A.: Physik der Sternatmosphären. 2. Aufl. Berlin/Göttingen/Heidelberg: Springer-Verlag 1955.
- [9] DAVIES, J. T.; VAUGHAN, J. M.: A New Tabulation of the Voigt Profile. Astrophys. J. 137 (1963) 1302-1305.
- [10] HJERTING, F.: Tables Facilitating the Calculation of Line Absorption Coefficients. – Astrophys. J. 88 (1938) 508-515.

- [11] AMBARZUMJAN, V. A.: Theoretische Astrophysik. –
 Berlin: VEB Deutscher Verlag der Wissenschaften 1957.
- FINN, G. D.; MUGGLESTONE, D.: Tables of the Line Broadening Function H (a, v). – Month. Notes royal astronom. Soc. 129 (1965) 221-235.
- [13] HUMMER, D. G.: The Voigt Function. Mem. royal astronom. Soc. **70** (1965) 1 - 32.
- [14] ELETZKIJ, A. V.; FREINKMAN, B. G.: The Distribution Function and Radiation Line Contour of Ions in the Low-Pressure Discharge. – Dokl. Akad. Nauk SSSR 210 (1973) 62-65.

Abstract: www.ewald-gerth.de/48abs.pdf

Representation of spectral line profiles by means of the Lorentz-function of n-th degree

Horst Melcher¹ and Ewald Gerth²

¹ Pedagogic College ,,Dr. Theodor Neubauer", Erfurt-Mühlhausen, GDR

² Central Institute for Astrophysics of the Academy of Sciences of the GDR, Potsdam

Abstract

It will be shown how to fit the Lorentz-function of n-th degree to profiles of the spectral lines. Some examples are given for analyzing profiles by a new method, called the "cutting-method". Values of the Voigt-function are compared with those of the general Lorentz-function (of n-th degree). It seems to be impossible to differentiate these two functions by means of experimental methods. The results of the analysis of profiles yielding n < 1 may be due to those profiles being composed of two or more components.

Publication

Zeitschrift für experimentelle Technik der Physik, Band 25, 1977, S. 52z–538. Eingegangen am 7. 4. 1977

Journal for Experimental Techniques of Physics Volume 25, 1977, p. 527–538. Received 1977, April 7th

Article available in German by the web-address: www.ewald-gerth.de/48.pdf

WISSENSCHAFTLICHE ZEITSCHRIFT DER PÄDAGOGISCHEN HOCHSCHULE "DR.THEODOR NEUBAUER" ERFURT-MÜHLHAUSEN Mathematisch-Naturwissenschaftliche Reihe, 19. Jahrgang 1983, Heft 1, S. 30–46

Kommutativität, Zeitspiegelung und Impulsverhalten pharmakokinetischer Reaktionen¹

Horst Melcher und Ewald Gerth Eingegangen am 1. 11. 1982

Einleitung

Die Pharmakokinetik [1], [2] erschließt Begriffe und Untersuchungsmethoden der allgemeinen Reaktionskinetik für die Belange der Medizin, speziell der Pharmakologie. Die Reaktionskinetik (ursprünglich für die spezifische Problematik der physikalischen Chemie entwickelt) ist heute nicht mehr an eine bestimmte Disziplin gebunden. Sie ist bereits zu einem multivalenten Instrument der Behandlung vielfältiger und komplizierter Probleme geworden, die nicht nur in den Naturwissenschaften, z.B. in der Chemie, der Physik und Biologie auftreten, sondern auch auf anderen Gebieten, wie etwa in der Bevölkerungsstatistik, anzutreffen sind.

Es hat mitunter den Anschein, als ob jede Disziplin ihren eigenen formalen Apparat der Reaktionskinetik zu entwickeln habe, was offenbar auch auf einen nicht ausreichenden interdisziplinären Kontakt zurückgeführt werden kann. Dadurch kann es dann nicht rasch genug zur Übernahme von Erfahrungen und Erkenntnissen kommen, aus welchen neue Fortschritte für eine spezielle Disziplin erwachsen.

In den bisherigen Arbeiten der Verfasser [3], [4], [5] und [6] wurden reaktionskinetische Probleme auf dem Gebiet der Photo- und Kernphysik behandelt, die vorteilhaft auch auf das Gebiet der Pharmakokinetik übertragen und dort angewendet werden können. Das trifft insbesondere auf die Begriffe Kommutativität bzw. Nichtkommutativität (und damit auf den Matrizenkalkül), die Zeitspiegelung und das Impulsverhalten zu, die zweckmäßig in die Pharmakokinetik eingeführt werden können. Damit ist dann eine bessere analytische Formulierung und Behandlung des Reaktionsgeschehens möglich. Wie es bei Knorre [2, S. 12] heißt, bevorzugt die Pharmakokinetik das Denken in mathematischen Modellen. Das aber bedeutet auch, beispielsweise die Matrizen als den geeigneten Kalkül anzuwenden, da sie den Problemen am besten angepaßt sind (Nicht-Kommutativität mancher Reaktionen). Mit diesem Formalismus ist auch die analytische Darstellung der oft zitierten Bateman-Funktion – z.B. bei Gladtke [7] – einfacher und in seiner vielseitigen Anwendung durchsichtiger. Es ist nicht ausgeschlossen, daß neben dem Differentialgleichungssystem mit konstanten Koeffizienten (nach Bateman) in der Pharmakokinetik auch ein allgemeineres Differentialgleichungssystem mit nichtkonstanten Koeffizienten eine Rolle spielt. Ein solches ist beim Durchgang von Elektronen durch Stoffschichten behandelt worden [8]. Die dort auftretenden Koeffizienten, die noch von der Eindringtiefe abhängen können, lassen sich formal leicht als zeitabhängige Reaktionskoeffizienten umschreiben.

¹Abstract: www.ewald-gerth.de/56abs.pdf – attached at the end of this article (page 108).

⁸⁹

1 Einführung der Begriffe Kommutativität, Zeitspiegelung und Impulsverhalten sowie deren Rolle in der Pharmakokinetik

1.1 Kommutativität

Unter der Kommutativität zweier Reaktionen wird verstanden, daß das Ergebnis zweier sukzessive verlaufender Reaktionsprozesse von der Reihenfolge unabhängig ist.

Die Kommutativität ist trivialerweise erfüllt, wenn beide Reaktionsprozesse mit den gleichen Parametern ablaufen. Eine Kommutativität liegt jedoch nicht immer vor. Man nennt zwei Reaktionen nichtkommutativ, wenn die Vertauschung ihrer Reihenfolge zu unterschiedlichen Ergebnissen führt.

Dies sei an einem drastischen Beispiel erläutert: Von zwei Pharmaka besitzt das eine für sich allein eine letale Wirkung; dagegen das zweite, für sich allein harmlos, führt zu einer Entgiftung und hebt die Letalwirkung auf. Es ist offensichtlich, daß der Zeitpunkt der Verabfolgung des zweiten Pharmakons in Beziehung zum ersten von entscheidender Bedeutung für die Überlebenschance ist. Die Vertauschung der Reihenfolge würde signifikant unterschiedliche Ergebnisse liefern.

Aber auch bei Anwendung gleicher Pharmaka besteht zwischen zwei sukzessiven Reaktionsprozessen im allgemeinen Nichtkommutativität, wenn sie sich in der Dosierung und damit auch in den Parametern unterscheiden. So ist das Ergebnis einer therapeutischen Normalbehandlung und einer nachfolgenden Intensivbehandlung offensichtlich von der Reihenfolge der Behandlungen abhängig. In jedem Falle stellen die Endbedingungen der Erstbehandlung die Anfangsbedingungen der anschließenden Zweitbehandlung dar. Es ist an und für sich naheliegend, zur analytischen Darstellung der Nichtkommutativität den Matrizenformalismus einzuführen.

1.2 Zeitspiegelung

Unter der Zeitspiegelung eines reaktionskinetischen Prozesses wird die zeitliche Rückverfolgung seines Verlaufes im Sinne einer "berechenbaren Rückschau" ohne Umkehrung der Kausalfolge verstanden.

Dabei werden die Endbedingungen eines Prozesses mit negativer Zeit auf die Anfangsbedingungen zurückgeführt. Auf diese Weise kann aus einem konstatierten Endzustand der Anfangszustand zu einem früheren Zeitpunkt und damit die Dosierung eines Pharmakons ermittelt werden.

Solche Situationen sind besonders in der Gerichtsmedizin häufig. Die Zeitspiegelung kann aber auch für diagnostische Untersuchungen wichtig sein, wenn bei Feststellung eines Einflußagens der ursprüngliche Zustand zu Beginn des Prozesses ermittelt werden soll.

1.3 Impulsverhalten

Unter dem Impulsverhalten wird die Reaktion auf von außen influenzierte Veränderungen der Parameter und/oder der Zusammensetzung des Reaktionssystems verstanden.

Ohne solche von außen einwirkenden Veränderungen strebt jedes Reaktionssystem einem Gleichgewichtszustand zu, in dem es nach seinem Erreichen verharrt, wenn keine neuen Einflüsse einwirken.

Der pharmakologisch interessierende Verlauf einer Reaktion stellt stets die Antwort des Systems auf einen von außen wirkenden Impuls (Ursache) dar, unter dessen Einfluß das System in den neuen, durch die jeweils geltenden Parameter definierten Zustand übergeht.

Der zeitliche Verlauf in der Zusammensetzung der Reaktionspartner ist die Übergangsfunktion, die den einwirkenden Impuls irgendwie verzerrt widerspiegelt. Typisch ist dabei eine zeitliche Relaxation, d.h. eine zeitliche und damit kausal nachfolgende Verzögerung des Impulsschwerpunktes.

In der Pharmakologie werden solche Impulse meist durch die Dosierung und (zeitlich gestaffelte) Verabfolgung von Pharmaka gegeben, indem beispielsweise die Konzentration einzelner Reaktionspartner sprunghaft herauf- oder herabgesetzt wird. Im weiteren Verlauf der Reaktion werden dadurch dann die Konzentrationen aller Partner verändert.

In der Therapie ist neben Fällen der einmaligen Verabfolgung eines Pharmakons die repetitive Dosierung üblich, welche einer Impulsfolge entspricht. Auf solche Impulsfolgen reagiert das gesamte System mit analogen Erscheinungen aufgezwungener Schwingungen. Es treten Einschwing-, Ausschwingvorgänge und stationäre Schwingungen auf. Für die Konzentrationen der einzelnen Partner ergeben sich in Abhängigkeit von der Frequenz der aufgeprägten Impulsfolge Amplituden-Frequenz-Abhängigkeiten in Analogie zu den aus der Elektronik bekannten Frequenzpässen.

Hiermit lassen sich u.a. sinnesphysiologische Vorgänge, wie z.B. die Verschmelzung des Flimmerns intermittierenden Lichtes beim Auge, von der die Kinotechnik Gebrauch macht, beschreiben. Jedoch auch Biorhythmen stellen Schwingungserscheinungen dar. Erwähnt sei die Anpassung der meisten Lebewesen an den Rhythmus der Tages- und Jahreszeiten, also an von außen wirkende Einflüsse. In anderen Fällen werden aber die Erregerimpulse für die Aufrechterhaltung einer Bioschwingung von dem System selbst geliefert, indem (analog zur Elektronik) eine Rückkopplung mit Impulsverstärkung wirksam wird.

Ein Beispiel für eine solche Schwingung ist die Herztätigkeit, deren Frequenz durch geeignete Pharmaka in weiten Grenzen beeinflußbar ist, einschließlich der Frequenz Null.

2 Analytische Beschreibung von Reaktionssystemen und -prozessen

2.1 Reaktionsordnungen

In der Pharmakokinetik treten – wie auch in der physikalischen Chemie – Reaktionen verschiedener Ordnung auf [1], [2], [9]. Reaktionen höherer als zweiter Ordnung lassen sich als sukzessive Einzelreaktionen auffassen und damit auf Reaktionen von höchstens 2. Ordnung reduzieren [9]. Es handelt sich dabei meistens um Bruttoreaktionen, die über eine Reihe von Zwischenstufen zustandekommen. Durch Verzweigungen in den Reaktionsverläufen ergeben sich auch gebrochene Reaktionsordnungen.

Man kann jedoch auch Reaktionen niedrigerer als 2. Ordnung durch Reaktionen 2. Ordnung mit Hilfe zeitlich nicht variabler Reaktionspartner darstellen, wie sie bei quasistationären Zuständen vorliegen.

Somit ist die Reaktion 2. Ordnung als der Normalfall der gegenseitigen Einwirkung mehrerer Reaktionspartner anzusehen. Es gibt jedoch auch physikalisch bedingte Reaktionen 1. Ordnung, bei denen es unzweckmäßig wäre, sie durch Reaktionen 2. Ordnung auszudrücken. Hierzu gehören alle Zerfallsreaktionen, bei denen die Reaktion von keinem weiteren Reaktionspartner abhängt. Der Prototyp solcher Reaktionen sind spontane radioaktive Umwandlungen (mit oder ohne Verzweigung) [3].

Die Reaktionen 1. Ordnung führen auf lineare Differentialgleichungen, für deren Lösung allgemeine Methoden ausgearbeitet worden sind. Schwieriger gestaltet sich die Lösung der die Reaktionen zweiter Ordnung beschreibenden nichtlinearen Differentialgleichungen.

Wegen ihrer größeren Einfachheit greift man in der Pharmakokinetik bevorzugt auf die linearen Reaktionsdifferentialgleichungen zurück, mit denen in vielen Fällen tatsächlich die wesentlichen Reaktionsphänomene erfaßt werden. Diese Darlegung soll darum auch von den linearen Systemen ausgehen, die in geeigneter analytischer Formulierung die Beschreibung der im Titel genannten Begriffe gestatten. Darüber hinaus können aber auch die nichtlinearen Reaktionssysteme mit einem erweiterten Formalismus behandelt werden, was an anderer Stelle näher ausgeführt wird. Schließlich liefert die hier vorgelegte analytische Darstellung der Reaktionssysteme und -prozesse auch die Algorithmen zu deren numerischer Berechnung.

2.2 Aufstellung des Reaktionsgleichungssystems

Ein Reaktionssystem besteht aus einer beliebigen Anzahl funktionell miteinander gekoppelter, reaktionsfähiger Komponenten (Reaktionspartner), deren gegenseitige Einwirkung im Verlaufe des Reaktionsprozesses zu einer Veränderung der mengenmäßigen Zusammensetzung der Komponenten führt.

Die zeitliche Veränderung des Mengenanteils einer Komponente ist ihre Reaktionsgeschwindigkeit. In einem homogenen Reaktionssystem werden die Mengen der Komponenten üblicher-weise auf das Volumen bezogen und haben damit die Bedeutung der Konzentration c. Die Reaktionsgeschwindigkeit der *i*-ten Komponente ist dann der zeitliche Differentialquotient dc_i/dt , der von den Konzentrationen aller übrigen Reaktionspartner abhängt.

In einem linearen Reaktionssystem liefert jeder von insgesamt n Partnern einen seiner Konzentration c_k proportionalen Anteil zur Veränderung der *i*-ten Komponente, deren Größe durch einen Übergangskoeffizienten K_{ik} bestimmt wird. Die Gesamtveränderung der *i*-ten Komponente ist gegeben durch die Summe

$$\frac{\mathrm{d}c_i}{\mathrm{d}t} = K_{i1}c_1 + K_{i2}c_2 + \dots + K_{in}c_n.$$
(1)

Für alle n Komponenten erhält man ein System von n linearen Differentialgleichungen, in welchem die Übergangskoeffizienten die Wechselbeziehungen zwischen den Reaktionspartnern bestimmen. Da jeder der n Partner mit jedem anderen in Beziehung stehen kann (was auch für den Fall keiner unmittelbaren Beziehung zwischen der i-ten

und k-ten Komponente mit $K_{ik} = 0$ gilt), erhält man bei einer aus dem Differentialgleichungssystem nach Gl. (1) folgenden übersichtlichen Anordnung der durch die Koeffizienten ausgedrückten Kombinationsmöglichkeiten das zweidimensionale Schema einer quadratischen Matrix:

$$\begin{pmatrix} K_{11} & K_{12} & \cdots & K_{1n} \\ K_{21} & K_{22} & \cdots & K_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ K_{n1} & K_{n2} & \cdots & K_{nn} \end{pmatrix} = \boldsymbol{K}$$

Mit der Anordnung der Komponenten in einem entsprechenden eindimensionalen Schema als Vektor

$$\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = c$$

(3) läßt sich das Differentialgleichungssystem nach Gl. (1) als lineare Vektortransformation schreiben:

$$\frac{\mathrm{d}\boldsymbol{c}}{\mathrm{d}t} = \boldsymbol{K}\boldsymbol{c}.\tag{4}$$

Diese Differentialgleichung (4) sagt aus, daß der "Konzentrationsvektor" c durch die Transformationsmatrix K in den "Reaktionsgeschwindigkeitsvektor" dc/dt überführt wird.

2.3 Eine ad hoc-Lösung des als Vektortransformation formulierten Reaktionsdifferentialgleichungssystems

Es ist eine bekannte Tatsache, daß in der geeigneten Formulierung, d.h. der Erkennung und Erfassung eines Problems, bereits die Lösung enthalten ist. Das trifft in besonderer Weise auch auf Gl. (4) zu. Bezogen auf das infinitesimale Zeitintervall dt wird der Konzentrationsvektor \boldsymbol{c} durch \boldsymbol{K} in den Differentialvektor d \boldsymbol{c} transformiert. Für die Einsicht in den Charakter solcher Transformationen sind Begriffe aus der Vektorgeometrie nützlich. Die Transformation eines Vektors bewirkt eine Drehung, Streckung und Verschiebung desselben im Vektorraum.

In entsprechender Weise kann man die Konzentrationen der Komponenten eines Reaktionssystems als die Maßzahlen eines Vektors in einem Hyperraum mit ebensovielen Dimensionen wie Komponenten, dem sogenannten "Reaktionsraum", ansehen. Der Reaktionsprozeß bewirkt eine Umverteilung der Mengen der einzelnen Reaktionspartner und damit eine Veränderung der Maßzahlen des Konzentrationsvektors, was einer Dreh-Streckung dieses Vektors bei festgehaltenem Koordinatenursprung entspricht. Das bedeutet, daß ein Konzentrationsvektor $\boldsymbol{c}(0)$ zu Anfang des Reaktionsprozesses in den Endvektor $\boldsymbol{c}(t)$ nach Ablauf der Reaktionszeit t durch eine zu Gl. (4) analoge Beziehung

$$\boldsymbol{c}(t) = \boldsymbol{R}(t)\boldsymbol{c}(0) \tag{5}$$

transformiert wird.

Die zeitabhängige Transformationsmatrix $\mathbf{R}(t)$ repräsentiert die Lösung des Differentialgleichungssystems und wird darum auch als *Resolventenmatrix* bezeichnet. In der Reaktionskinetik wird sie "Reaktionsmatrix" genannt.

Es ist bemerkenswert, daß eine Reaktionsmatrix gemäß Gl. (5) für jede Veränderung in der Verteilung der Komponenten eines Reaktionssystems existieren muß, also auch im Falle der Reaktionen höherer Ordnung mit nichtlinearen Differentialgleichungen, da durch die Reaktionsmatrix stets die Transformation des Reaktionssystems von einem Zustand in einen anderen beschrieben wird.

2.4 Die Reaktionsmatrix von Reaktionssystemen erster Ordnung

Die konkrete analytische Gestalt der Reaktionsmatrix folgt aus der Lösung der Matrix-Differentialgleichung (4), für die es verschiedene Methoden gibt.

Einen besonders einfachen Zugang zu der Lösung findet man durch Integration dieser Gleichung unter Hinzufügung des Anfangskonzentrationsvektors c(0) als Integrationskonstante:

$$\boldsymbol{c}(t) = \boldsymbol{c}(0) + \int_{0}^{t} \boldsymbol{K}(\tau) \boldsymbol{c}(\tau) \mathrm{d}\tau.$$
(6)

Diese Volterrasche Integralgleichung 2. Art wird iterativ gelöst, indem man die entartete Kernmatrix $\mathbf{K}(\tau)$ in eine Neumannsche Reihe entwickelt, die die Resolventenmatrix des linearen Differentialgleichungssystems mit im allgemeinen nichtkonstanten Koeffizienten ist:

$$\boldsymbol{c}(t) = \left(\boldsymbol{1} + \int_{0}^{t} \boldsymbol{K}(\tau) \mathrm{d}\tau + \int_{0}^{t} \boldsymbol{K}(\tau) \int_{0}^{\tau} \boldsymbol{K}(\tau') \mathrm{d}\tau' \mathrm{d}\tau + \cdots \right) \boldsymbol{c}(0).$$
(7)

Die Größe 1 bedeutet hierin die Einheitsmatrix. Die Hierarchie der Integrationsvariablen wird durch τ , τ' , τ'' usw. symbolisiert.

Im Falle der zeitlichen Konstanz der Koeffizientenmatrix K = Const vereinfacht sich die Resolventenmatrix bedeutend und kann als Matrix-Exponentialfunktion geschrieben werden:

$$\mathbf{R}(t) = \mathbf{1} + \mathbf{K}(t) + \frac{1}{2!}\mathbf{K}^{2}t^{2} + \frac{1}{3!}\mathbf{K}^{3}t^{3} + \dots = \exp(\mathbf{K}t).$$
(8)

Die Transformationsgleichung (5) nimmt damit die einfache analytische Gestalt

$$\boldsymbol{c}(t) = \exp(\boldsymbol{K}t) \cdot \boldsymbol{c}(0) \tag{9}$$

an und liefert so ein für das ganze System geltendes Analogen zu der bekannten skalaren Lösung der Reaktion jeder einzelnen Komponente.

Die Analogie ist weitgehend und kann unter Berücksichtigung der Matrixalgebra für analytische Herleitungen und Umformungen benutzt werden. Durch die Reihenentwicklung der Matrix-Exponentialfunktion wird die aus anderen Verfahren zur Lösung linearer Differentialgleichungssysteme bekannte aufwendige Ermittlung der Eigenwerte umgangen. Für die numerische Berechnung der Matrix-Exponentialfunktion stehen Rechnerprogramme zur Verfügung.

3 Die Nichtkommutativität zweier sukzessiver Reaktionen – eine Konsequenz des Transformationscharakters der Reaktion

Zwei nache
inander ablaufende Reaktionsprozesse mit unterschiedlichen Reaktionsmatrizen
 \mathbf{R}_1 und \mathbf{R}_2 und den Reaktionszeiten
 t_1 und t_2 werden durch zwei sukzessive Transformation
en beschrieben, wobei die Endbedingungen der ersten Reaktion

$$\boldsymbol{c}(t_1) = \boldsymbol{R}_1(t_1) \cdot \boldsymbol{c}(0) \tag{10}$$

die Anfangsbedingungen der zweiten Reaktion liefern,

$$\boldsymbol{c}(t_1 + t_2) = \boldsymbol{R}_2(t_2) \cdot \boldsymbol{c}(t_1) \tag{11}$$

oder nach Einsetzen von Gl. (10) in Gl. (11) :

$$\boldsymbol{c}(t_1 + t_2) = \boldsymbol{R}_2(t_2)\boldsymbol{R}_1(t_1) \cdot \boldsymbol{c}(0).$$
(12)

Es ergibt sich eine aus beiden Reaktionen resultierende Transformationsmatrix als Produkt beider einzelnen Reaktionsmatrizen

$$\boldsymbol{R}_{21}(t_1 + t_2) = \boldsymbol{R}_2(t_2)\boldsymbol{R}_1(t_1), \tag{13}$$

vermittels derer der Anfangsvektor $\boldsymbol{c}(t_0) = \boldsymbol{c}(0)$ in den Endvektor $\boldsymbol{c}(t_1+t_2)$ überführt wird.

Für beliebig viele sukzessive Reaktionen ist die resultierende Transformationsmatrix durch das vielfache Matrizenprodukt

$$\boldsymbol{R}_{n\dots 21}(t_1 + t_2 + \dots + t_n) = \boldsymbol{R}_n(t_n) \cdots \boldsymbol{R}_2(t_2) \boldsymbol{R}_1(t_1)$$
(14)

gegeben, in welchem gemäß der durch die Matrixalgebra definierten Verknüpfungsregeln die Matrixfaktoren der sukzessiven Reaktionen mit wachsenden Indizes von rechts nach links laufen. Diese Reihenfolge ist für die Matrizenmultiplikation von entscheidender Bedeutung, da hierbei das Kommutationsgesetz für die Produktfaktoren im allgemeinen nicht gilt und eine Vertauschung der Reihenfolge der Reaktionsprozesse zu unterschiedlichen Endergebnissen führt.

Somit gilt für die Produkte zweier unterschiedlicher Reaktionsmatrizen R_1 und R_2 allgemein bei Vertauschung ihrer Reihenfolge

$$\boldsymbol{R}_2 \boldsymbol{R}_1 \neq \boldsymbol{R}_1 \boldsymbol{R}_2. \tag{15}$$

Die Vertauschungsrelation liefert eine die Nichtkommutativität kennzeichnende Differenzmatrix

$$\boldsymbol{D} = \boldsymbol{R}_2 \boldsymbol{R}_1 - \boldsymbol{R}_1 \boldsymbol{R}_2, \tag{16}$$

die nur in Sonderfällen gleich der Nullmatrix $\mathbf{0}$ ist. Solch ein Sonderfall liegt trivialerweise vor, wenn durch die Zweitreaktion die Erstreaktion ohne Änderung der Reaktionsparameter und damit der Übergangskoeffizienten einfach fortgesetzt wird. Zur Untersuchung der Kommutativitätseigenschaften der Reaktionsmatrizen eignet sich besonders gut die Matrix-Exponentialfunktion nach Gl. (8).

Bei gleichen Übergangsmatrizen K für beide Reaktionen, aber unterschiedlichen Reaktionszeiten t_1 und t_2 , gilt

$$\boldsymbol{R}_{1}\boldsymbol{R}_{2} = \exp(\boldsymbol{K}t_{1}) \cdot \exp(\boldsymbol{K}t_{2}) = \exp[\boldsymbol{K}(t_{1}+t_{2})] = \exp(\boldsymbol{K}t_{2}+\boldsymbol{K}t_{1}) = \boldsymbol{R}_{2}\boldsymbol{R}_{1}.$$
 (17)

Offensichtlich steht die Kommutativität der Reaktionsmatrizen mit der Kommutativität der Übergangsmatrizen in engem Zusammenhang. Im obigen Beispiel ist mit $K_1 = K_2 = K$ notwendigerweise

$$K_1 K_2 - K_2 K_1 = 0. (18)$$

So trifft man ebenfalls auf Kommutativität der Reaktionsmatrizen, wenn sich die Koeffizientenatrizen $\mathbf{K}_1 = \alpha_1 \mathbf{K}$ und $\mathbf{K}_2 = \alpha_2 \mathbf{K}$ durch skalare Faktoren α_1 und α_2 unterscheiden,

$$\exp(\alpha_1 \mathbf{K} t_1) \cdot \exp(\alpha_2 \mathbf{K} t_2) = \exp[\mathbf{K}(\alpha_1 t_1 + \alpha_2 t_2)] = \exp(\alpha_2 \mathbf{K} t_2) \cdot \exp(\alpha_1 \mathbf{K} t_1), \quad (19)$$

was auch unmittelbar durch Einsetzen der Übergangsmatrizen in Gl. (18) folgt.

Interessanterweise liegt auch dann Kommutativität vor, wenn alle Koeffizienten der Übergangsmatrizen Produkte mit der gleichen Zeitfunktion f(t) sind. In diesem Falle zeitlich variabler Übergangsmatrizen

$$\boldsymbol{K}(t) = \boldsymbol{K}f(t) \tag{20}$$

kann man die Reaktionsmatrix mit Hilfe des Integrals der Zeitfunktion f(t) angeben:

$$\boldsymbol{R}(t) = \exp\left[\boldsymbol{K} \int_{0}^{t} f(\tau) \mathrm{d}\tau\right], \qquad (21)$$

woraus in gleicher Weise wie oben die Kommutativität folgt.

Der hier aufgezeigte Zusammenhang zwischen der Kommutativität der Reaktionsmatrizen und der Übergangsmatrizen ist nach den Ausführungen im Abschnitt 2.3, wonach die Formulierung des Reaktionsdifferentialgleichungssystems als Vektortransformation Gl. (4) bereits die Lösung impliziert, leicht einzusehen. In [6] wurde hierfür ein ausführlicher Beweis angeführt.

Abgesehen von diesen Sonderfällen sind sukzessive Reaktionen mit unterschiedlichen Parametern prinzipiell als nichtkommutativ anzunehmen. Der Grad der Kommutativitätsabweichung, welcher durch die Vertauschungsrelation GI. (16) gegeben ist, kann sehr unterschiedlich sein. Bei geringfügigen Kommutativitäts-abweichungen kann man näherungsweise mit kommutativen Matrizen rechnen und die Abweichung durch eine Störungsrechnung ermitteln [6].

Die Nichtkommutativität ist natürlich nicht auf Reaktionen 1. Ordnung beschränkt, da der Reaktionsprozeß in jedem Falle der Transformation des Konzentrationsvektors im Reaktionsraum entspricht. Die Übergangskoeffizienten sind dann aber Funktionen der Reaktionszeit.

4 Die Reaktionsmatrix bei zeitlich variablen Übergangskoeffizienten

Die Lösung des linearen Differentialgleichungssystems ist mit vorgegebenen Zeitfunktionen nach Gl. (7) durch Entwicklung der *Neumann*schen Reihe möglich.

Für die praktische Berechnung der Resolventenmatrix wäre die Auswertung der von Glied zu Glied komplizierter werdenden Integrale allerdings etwas schwerfällig. Eine einfachere Darstellung der Resolventenmatrix erhält man durch Anknüpfen an die im Abschnitt 3 beschriebenen Mehrfachreaktionen, die hier auf eine Folge von (im Grenzfall) unendlich vielen Reaktionen infinitesimaler Zeitabschnitte d τ spezialisiert wird.

Innerhalb des differentiellen Zeitabschnittes $d\tau$ kann man die Koeffizienten als konstant ansehen. Mit Gl. (8) und Abbruch der Reihe nach dem linearen Glied sowie Gl, (9) gilt hierfür eine infinitesimale Resolventenmatrix

$$d\mathbf{R}(\tau) = \mathbf{1} + \mathbf{K}(\tau)d\tau = \exp[\mathbf{K}(\tau)d\tau].$$
(22)

Die gesamte Resolventenmatrix der Reaktion in der Zeit von 0 bis t ergibt sich als zeitlich geordnetes Produkt der infinitesimalen Resolventenmatrizen, für welches von *Volterra* der Begriff des Produktintegrals eingeführt wurde,

$$d\boldsymbol{R}(\tau) = \int_{0}^{\infty} \left(\mathbf{1} + \boldsymbol{K}(\tau) d\tau \right) = \int_{0}^{\infty} \exp\left(\boldsymbol{K}(\tau) d\tau \right).$$
(23)

Das *Volterra*sche Produktintegral ist auch geeignet zur Beschreibung der Reaktionen höherer als 1. Ordnung mit nichtlinearen Reaktionsdifferentialgleichungen.

Bei Reaktionen von 2. Ordnung an gehen für jeden Zeitpunkt der Reaktion die Momentanwerte der Konzentrationen der Reaktionspartner in die Übergangsmatrix ein. Der Wert der zeitlich variablen Übergangskoeffizienten wird jeweils von dem gesamten vorangegangenen Reaktionsgeschehen bestimmt.

Das nichtlineare Differentialgleichungssystem lautet in Matrizenformulierung

$$\frac{\mathrm{d}\boldsymbol{c}}{\mathrm{d}t} = \boldsymbol{K}(\mathbf{c})\mathbf{c},\tag{24}$$

welches für infinitesimale Zeitintervalle als linear angesehen werden kann. Man erhält dann gemäß Gl. (22) die Lösung

$$d\boldsymbol{R}(\boldsymbol{c}(\tau)) = \mathbf{1} + \boldsymbol{K}(\boldsymbol{c}(\tau)) d\tau = \exp[\boldsymbol{K}(\boldsymbol{c}(\tau)) d\tau]$$
(25)

und die Gl. (23) entsprechende Formulierung des Produktintegrals. Im Unterschied zu den vorgebbaren Zeitfunktionen der Koeffizienten linearer Reaktionen ergeben sich bei nichtlinearen Reaktionen die Zeitfunktionen erst aus dem Reaktionsverlauf als eine lückenlose Kausalfolge der Vorgeschichte des gesamten Prozesses. Während bei den linearen Reaktionen die ermittelte Reaktionsmatrix – selbst bei zeitlich variabler Übergangsmatrix – von den Konzentrationen unabhängig ist und als Resolventenmatrix und damit als charakteristische Prozeßgröße auf beliebige Anfangsbedingungen der Konzentrationen angewendet werden kann, gilt die Reaktionsmatrix nichtlinearer Reaktionen in ihrer Abhängigkeit von den Konzentrationen nur für eine bestimmte Verteilung der Komponenten der Reaktionspartner bzw. für eine bestimmte Reaktionsphase. Dennoch existiert die Reaktionsmatrix auch in diesem Falle und fügt sich in die obige Betrachtung über die Nichtkommutativität ein.

Die Zerlegung des Reaktionsprozesses in Zeitschritte und die Bildung des Mehrfachproduktes der Reaktionsmatrizen solcher entsprechend der geforderten Genauigkeit kleinen Zeitintervalle stellt eine Approximation an das *Voterra*sche Produktintegral dar und liefert damit auch einen möglichen Lösungsalgorithmus beliebiger Reaktionsdifferentialgleichungssysteme.

Hierfür erweist sich jedoch eine umfassendere Formulierung des Reaktionsgeschehens mit Hilfe der Tensoralgebra [9] als günstiger. In dieser Darstellungsart, die hier nicht weiter ausgeführt werden soll, sind die Übergangsmatrizen der Reaktionen 1. Ordnung Tensoren 2. Stufe; dagegen lassen sich die Übergangskoeffizienten der Reaktionen 2. Ordnung als Tensoren 3. Stufe arrangieren. Für höhere Reaktionsordnungen erfolgt eine sinngemäße Erweiterung.

5 Die Zeitspiegelung als inverse Transformation

Wenn eine Reaktion durch eine Transformation des Reaktionsvektors mit "Dreh-Streckung" im Reaktionsraum beschrieben werden kann, so ist die daraus zu ziehende Folgerung sofort offenkundig, daß die inverse Transformation den Vektor wieder zurückdreht, das Reaktionssystem also wieder in seinen Ausgangszustand zurückversetzt.

Nach der Matrixalgebra gilt für die Umkehrtransformation zu Gl. (5)

$$\boldsymbol{c}(0) = \boldsymbol{R}^{-1}(t)\boldsymbol{c}(t) \tag{26}$$

mit der inversen (oder reziproken) Transformationsmatrix \mathbf{R}^{-1} . Die Matrixinversion erfordert normalerweise einen gewissen Rechenaufwand, der mit programmierbaren Rechengeräten allerdings unwesentlich ist. Die Reaktionsmatrizen lassen sich jedoch auf besonders einfache Weise analytisch invertieren.

Geht man davon aus, daß das Produkt einer Matrix mit ihrer Inversen die Einheitsmatrix ergibt,

$$\boldsymbol{R}(t)\boldsymbol{R}^{-1}(t) = \boldsymbol{1},\tag{27}$$

so ist dies nach den Ausführungen über mehrfache Matrizenprodukte im Abschnitt 4. erfüllt für

$$\boldsymbol{R}(t)\boldsymbol{R}(-t) = \boldsymbol{R}(t-t) = \boldsymbol{R}(0) = \boldsymbol{1}$$
(28)

mit

$$\boldsymbol{R}^{-1}(t) = \boldsymbol{R}(-t). \tag{29}$$

Am Beispiel der Reaktionsmatrix als Matrix-Exponentialfunktion Gl. (8) ist dies leicht ersichtlich:

$$\left[\exp(\mathbf{K}t)\right]^{-1} = \exp\left[\mathbf{K}(-t)\right].$$
(30)

Diese Gleichung besagt, daß die Zeitspiegelung bei linearen Reaktionssystemen für eine einheitliche Reaktionsphase, d.h. mit unveränderlicher Koeffizientenmatrix K, streng erfüllt ist. Das trifft jedoch auch auf veränderliche Koeffizientenmatrizen zu, wenn die gesamte Reaktionsmatrix das zeitlich geordnete Produkt der einzelnen Reaktionsmatrizen der Reaktionsphasen ist, in welcher die Koeffizienten jeweils konstant sind.

Bei der Inversion der Reaktionsmatrix wird die zeitliche Ordnung der Phasen umgekehrt, so daß sich für Gl. (14) die Zeitspiegelung

$$\mathbf{R}^{-1}(t) = \mathbf{R}(-t) = \mathbf{R}(-t_1 - t_2 - \dots - t_n) = \mathbf{R}_1(-t_1)\mathbf{R}_2(-t_2)\cdots\mathbf{R}_n(-t_n)$$
(31)

ergibt.

In Übertragung dieser Überlegung auch auf den infinitesimalen Grenzfall des *Volterra*schen Produktintegrals findet man, daß unter Beachtung der umgekehrten zeitlichen Ordnung der infinitesimalen Matrixfaktoren die Zeitspiegelung für beliebige kinetische Reaktionen gilt; das bedeutet, daß nach Vorgabe der **gegenwärtigen** Ausgangsbedingungen und Systemparameter das Reaktionsgeschehen in **Vergangenheit** und **Zukunft** determiniert ist.

Die prinzipielle strenge Determiniertheit des Reaktionsgeschehens im *Laplaceschen* Sinne wird aber eingeschränkt durch die begrenzte Genauigkeit der Parameter und der Anfangsbedingungen und Stabilitätskriterien, die insbesondere für den Beginn einer Reaktion aus dem Gleichgewichtszustand heraus gelten, und zwar sowohl in positiver als auch in negativer Zeitrichtung. Es bleibt aber immer bei der "Rückschau"; eine Umkehrung der Kausalfolge gibt es nicht!

6 Impulseinwirkungen auf das Reaktionssystem

Durch die sprung- oder stoßartige Veränderung der Zusammensetzung des Reaktionssystems oder der Parameter wird ein Nachfolgeprozeß eingeleitet, der wieder einem Gleichgewichtszustand zustrebt. Dabei beschreibt die Spitze des Konzentrationsvektors eine von der Transformationsmatrix bestimmte Raumkurve im Reaktionsraum, die mit der Zeit $t \to \infty$ zur Ruhe kommt.

Die hierfür gültige Transformationsmatrix

$$\boldsymbol{R}_{\infty} = \lim_{t \to \infty} \boldsymbol{R}(t) \tag{32}$$

läßt sich für $d\mathbf{c}/dt = \mathbf{0}$ aus Gl. (4) herleiten. Sie besteht lediglich aus Kombinationen der Übergangskoeffizienten und ist von der Zeit unabhängig. Die Transformation eines Konzentrationsvektors mit dieser Matrix führt nur bei linearen Reaktions-Differentialgleichungen von beliebigen Anfangsverteilungen ausgehend zu derselben, dem Gleichgewicht entsprechenden Endverteilung; bei nichtlinearen Reaktions-Differentialgleichungen hängt die Endverteilung von der Anfangsverteilung und von dem Reaktionsweg ab.

6.1 Konzentrationsimpulse

Ein Konzentrationsimpuls wird durch eine plötzliche Veränderung in der Zusammensetzung der Komponenten hervorgerufen (in der Pharmakologie durch Verabreichung eines Pharmakons). Obgleich auch stoßartige Konzentrationsimpulse denkbar sind, treten in der Praxis fast ausschließlich sprungartige Impulse auf, indem dem System irgendwelche Komponenten zu einem bestimmten Zeitpunkt hinzugefügt werden. Danach verläuft die Reaktion mit den systemeigenen Parametern. Somit sind die Anfangsbedingungen zum Zeitpunkt des Impulses gegeben durch die Summe der Konzentrationsvektoren nach Abschluß der vorangegangenen Reaktion und der neu hinzugefügten Komponenten. Dabei reagieren die beiden Vektoren parallel und überlagern sich im Falle von Reaktionen 1. Ordnung ungestört. Bezeichnet man nämlich den Zeitpunkt einer Dosisgabe mit t = 0, den aus der vorangegangenen Reaktion resultierenden Konzentrationsvektor mit c(0) und den Konzentrationsvektor der Dosis mit

 c_D , dann gilt nach Gl. (5)

$$\boldsymbol{c}(t) = \boldsymbol{R}(t) (\boldsymbol{c}(0) + \boldsymbol{c}_D) = \boldsymbol{R}(t) \boldsymbol{c}(0) + \boldsymbol{R}(t) \boldsymbol{c}_D.$$
(33)

Diese an sich simple Tatsache dürfte in vielen Fällen von besonderem Interesse sein. Sie besagt, daß die Dosis in dem Reaktionssystem ein gewisses Eigenleben führt und sich zu den Konzentrationen der Grundreaktion nur mengenmäßig aufstockt. Besteht der Dosisvektor c_D gar aus Komponenten, die in der Grundreaktion nicht enthalten sind, dann verlaufen beide Reaktionen überhaupt völlig unabhängig voneinander. Ein Pharmakon, z.B. ein Färbungs- oder Kontrastmittel oder auch ein Tracer, kann demnach im Organismus reagieren, ohne eine Funktion desselben zu beeinflussen.

Anders ist die Situation bei den Reaktionen höherer als 1. Ordnung. Hier treten die Komponenten des Dosisvektors mit denen der Grundreaktion in Wechselwirkung, die Grundreaktion wird also nachhaltig durch die Dosisgabe beeinflußt. Da man hierin den Normalfall in der Pharmakologie sehen muß, ist damit auch auf die Grenzen der Behandlung pharmakokinetischer Probleme durch Reduktion auf lineare Differentialgleichungssysteme hingewiesen.

6.2 Parameterimpulse

Die zeitliche Veränderung der Übergangskoeffizienten erfolgt durch äußere, meist physikalische Einflüsse auf das Reaktionssystem wie Temperatur, Druck, Verdünnung, Elektroschocks usw. Das System reagiert darauf mit einer Umverteilung der Komponenten nach einer zeitlichen Übergangsfunktion. Für die Darstellung dieser Funktion gelten die Regeln der Vektortransformation nach Gl. (5).

6.3 Impulsverformung

Ein Eingriff in das Reaktionssystem durch Aufprägen von Konzentrations- oder Parameterimpulsen führt zu mengenmäßigen Veränderungen der Komponenten, deren Übergangsfunktionen den Impulsverlauf verzögert und verzerrt nachvollziehen. Diese Veränderungen haben den Charakter von Konzentrationsimpulsen, die ihrerseits auf ein angekoppeltes weiteres Reaktionssystem einwirken können. So vermögen Parameterimpulse Konzentrationsimpulse hervorzurufen, während Konzentrationsimpulse stets wieder Konzentrationsimpulse erzeugen. Dabei kommt es in jedem Reaktionssystem zu Impulsverformungen. Grundelemente der Impulsverformung sind die Differentiation und die Integration von Impulsen. Diese Begriffe stammen aus der elektronischen Impulstechnik und können in voller Analogie z.B. auf pharmakologische Reaktionssysteme übertragen werden.

Die Integration wird physikalisch durch die Ansammlung einer Menge in einem Reservoir realisiert. In der Elektronik ist diese gewöhnlich eine Kapazität (Kondensator, Akkumulator) mit einer Aufnahmefähigkeit für die elektrische Ladung; in der Reaktionskinetik werden die Mengen und damit Konzentrationen bei den Reaktionspartnern des Systems aufgehäuft. Die Differentiation entspricht physikalisch einer Mengenveränderung oder -verschiebung. In der Elektronik ist dies gegeben durch den Strom in einem RC-Glied. Das entspricht in der Reaktionskinetik der zeitlich bezogenen Übergangsmenge von einer Komponente des Systems zur anderen, also dem zeitlichen Differentialquotienten der Konzentration.

Die Impulsverformung in einem Reaktionssystem beruht auf diesen Elementen der Differentiation und Integration von Impulsen. Dabei ist der Impulsverlauf einer einzelnen Komponente des Systems schwer zu übersehen. Die Übergangsfunktion jeder Komponente läßt sich bei linearen Differentialgleichungen stets als eine Summe von Exponentialfunktionen darstellen, deren Koeffizienten sich auf komplizierte Weise aus den Übergangskoeffizienten zusammensetzen und deren Argumente Produkte der Zeit und der Eigenwerte des Systems sind [5]. Auf die Behandlung des Eigenwertproblems kann hier verzichtet werden, da die Angabe der Lösung als Resolvente des Systems die Eigenwerte übergeht. Die Lösung des Eigenwertproblems ist lediglich für die Strukturanalyse der Reaktionsmatrix erforderlich.

Für die vorliegende Betrachtung ist es jedoch von Interesse, daß die Übergangsfunktionen der Komponenten keinen einfachen Exponentialfunktionen folgen, sondern auch Extremwerte, Oszillationen usw. mit einschließen können. Dies alles wird einheitlich mit der Lösung des Differentialgleichungssystems nach Gl. (5) durch die Matrix-Exponentialfunktion zusammengefaßt. Die Veränderungen der Konzentrationen der Komponenten bilden den Konzentrationsimpulsvektor; dagegen betreffen die Veränderungen der Parameter die Übergangsmatrix und stellen damit die Parameterimpulsmatrix. Die Impulsverformung wirkt sich auf den gesamten Konzentrationsimpulsvektor aus.

Für ein lineares Reaktionssystem ist die Differentiation und Integration des Konzentrationsimpulsvektors sofort aus Gl. (9) zu ersehen; sie entspricht vollkommen dem skalaren Fall:

$$\frac{\mathrm{d}}{\mathrm{d}t} \exp(\mathbf{K}t) = \mathbf{K} \exp(\mathbf{K}t) \tag{34}$$

$$\int_{0}^{t} \exp(\mathbf{K}\tau) d\tau = \mathbf{K}^{-1} (\mathbf{1} - \exp(\mathbf{K}t)).$$
(35)

Differentiationen und Integrationen von Impulsen können in einem Reaktionssystem jedoch keineswegs isoliert betrachtet werden, da sie immer Bestandteile eines größeren Zusammenhanges sind. Zur Untersuchung der Impulsverformung soll darum von den "reinen" Impulsen des Stoßes und des Sprunges ausgegangen werden.

Ein stoßartiger Impuls bewirkt eine Auslenkung des Konzentrationswertes einer Komponente aus seiner Normallage, in die er infolge der Relaxation des Systems nach einer Übergangsfunktion allmählich zurückkehrt, dagegen verursacht ein sprungartiger Impuls eine fortschreitende Auslenkung aus der Ruhelage, die erst allmählich in einem anderen Zustand des Systems zur Ruhe kommt.

Der ,,reine" Erregerimpuls wird also durch die Relaxation mehr oder weniger ,,verwaschen".

Verwaschungen von profilartigen Verteilungsfunktionen werden durch Streuprozesse hervorgerufen, für die das Faltungsintegral gilt:

$$F(x) = \int_{-\infty}^{+\infty} f_1(x - \xi) f_2(\xi) d\xi.$$
 (36)

Bei zeitlichen Streuvorgängen erfolgt die Streuung nur einseitig in positiver Zeitrichtung:

$$F(t) = \int_{0}^{t} f_{1}(t-\tau) f_{2}(\tau) \mathrm{d}\tau.$$
 (37)

So ergibt sich die Übergangsfunktion eines Einkomponentensystems nach Gl. (9a) bei stoßartiger Erregung mit der den Stoß charakterisierenden Delta-Funktion $\delta(t)$ als einseitiges Faltungsintegral

$$\int_{0}^{t} \delta(t-\tau) \exp(-\alpha\tau) d\tau = \exp(-\alpha\tau)$$
(38)

und bei sprungartiger Erregung mit Kennzeichnung des Sprunges durch die untere Integralgrenze

$$\alpha \int_{0}^{t} \exp(-\alpha\tau) d\tau = 1 - \exp(-\alpha\tau) .$$
(39)

Gl. (38) reproduziert die Übergangsfunktion, während Gl. (39) das Integral der Übergangsfunktion liefert. Reine Impulse können so zur Ermittlung der Übergangsfunktion eines Reaktionssystems benutzt werden. In der Realität besitzen aber alle Impulse ein nach einer Zeitfunktion verlaufendes Profil, und es erfolgt eine Faltung dieser Funktion mit der Übergangsfunktion.

Die Impulsverformung durch Faltung ist eine Konsequenz aus der Lösung linearer Differentialgleichungssysteme. Auf einen Beweis muß hier aus Platzgründen verzichtet werden. Hinweise für eine Herleitung findet man in [4].

Der erregende Stoß- oder Sprungimpuls kann also selbst bereits "verwaschen" sein – eventuell als eine Folge vorangegangener Impulsverformungen. In allen Fällen erfolgt eine Verbreiterung und Verflachung der Impulsprofile nach dem Faltungsprinzip. Auch dies ist eine wichtige Aussage für die Pharmakologie.

Das Faltungsintegral hat einen produktartigen Charakter und wird deshalb oft als "Faltungsprodukt" bezeichnet. Die beiden Funktionen f_1 und f_2 sind in Gl. (37) kommutativ. Für die beiden Matrix-Exponentialfunktionen zweier gekoppelter Reaktionssysteme gilt ein zu Gl. (37) analoges Faltungsintegral

$$\boldsymbol{R}(t) = \int_{0}^{t} \boldsymbol{R}_{1}(t-\tau) \boldsymbol{R}_{2}(\tau) \mathrm{d}\tau, \qquad (40)$$

in dem aber die beiden die Übergangsfunktionen erzeugenden Reaktionsmatrizen R_1 und R_2 nicht mehr ohne weiteres kommutativ sind. Das bedeutet, daß die Impulsverformung von der Reihenfolge abhängig ist.

Somit gilt bei Reaktionssystemen auch für die Impulsverformung die der Matrixalgebra eigene Regel der Nichtkommutativität von multiplikativen Verknüpfungen.

6.4 Impulsfolgen

Eine Folge von Konzentrationsimpulsen liegt in der Pharmakokinetik bei repetitiver Dosierung eines Pharmakons vor. Folgen von Parameterimpulsen beziehen sich mehr auf die Therapie (z.B. Wechselbäder, rhythmische Belastungen, Tages- und Jahreszeiteinflüsse). In allen Fällen handelt es sich um sukzessive Reaktionen, die in einzelne Prozeßabschnitte aufgeteilt werden und in jeder Phase an das Ergebnis der vorangegangenen Reaktion anknüpfen.

Bei sprungartigen Parameterveränderungen gilt für die Folge der Reaktionsphasen zwischen den Sprüngen die mehrfache Multiplikation der Matrizen nach Gl. (14). Im Falle einer sich *n*-mal wiederholenden Folge zweier unterschiedlicher Phasen der Parameterwerte mit den Reaktionsmatrizen $\mathbf{R}_1(\Delta t_1)$ und $\mathbf{R}_2(\Delta t_2)$ wird die Gesamtreaktion durch die Matrixpotenz

$$\boldsymbol{R} = \left(\boldsymbol{R}_1(\triangle t_1)\boldsymbol{R}_2(\triangle t_2)\right)^n \tag{41}$$

beschrieben.

Die Zeitfunktionen folgen dem Verlauf der Parameteränderungen mit einer gewissen Trägheit. Ist die Abklingzeit kurz gegenüber den Intervallen zwischen den Impulsen, so beobachtet man bei den einzelnen Konzentrationen Wellenzüge unterschiedlicher Amplitude aber gleicher Frequenz. Das Reaktionssystem wirkt also für die von außen aufgeprägten periodischen Variationen der Parameter wie ein Frequenzfilter analog den elektronischen Frequenzpässen [10], [11].

Folgen von sprungartigen Konzentrationsimpulsen, wie sie bei repetitiver Dosierung vorliegen, führen zu einer treppenartigen Aufstockung der Konzentrationen an den Sprungstellen. Beim Reaktionsablauf werden die Stufen meist zu einem sägezahnartigen Profil verformt [1], [2], [7]. Das mittlere Niveau dieser Sägezahnkurven kann selbst wieder einer Übergangsfunktion folgen. Die "Sägezähne" haben dann den Charakter von Auslenkungen und Oszillationen um den mittleren Reaktionsablauf. Erreicht die mittlere Reaktion bereits das Gleichgewicht, so erfolgt bei gleichbleibender repetitiver Dosierung eine stationäre Oszillation des Konzentrationsvektors.

Die analytische Beschreibung der Reaktion des Systems bei Aufprägung einer Folge von Konzentrationsimpulsen folgt aus der Erweiterung von Gl. (33) mit den Dosisgaben \mathbf{c}_{Dn} und den dazwischenliegenden Zeitintervallen t_n :

$$\boldsymbol{c}(t_1 + t_2 + \dots + t_n) = \boldsymbol{R}(t_n) \cdots \boldsymbol{R}(t_2) \boldsymbol{R}(t_1) \boldsymbol{c}(0) + \\ + \boldsymbol{R}(t_n) \cdots \boldsymbol{R}(t_2) \boldsymbol{R}(t_1) \boldsymbol{c}_{D1} + \\ + \boldsymbol{R}(t_n) \cdots \boldsymbol{R}(t_2) \boldsymbol{c}_{D2} + \\ \dots \\ + \boldsymbol{R}(t_n) \boldsymbol{c}_{Dn}.$$

$$(42)$$

Im Falle gleichbleibender Dosen und Zeitintervalle erhält man mit $c_{Dn} = c_D, t_n = t$

und $\mathbf{R}(t) = \mathbf{R}$ (unter der Voraussetzung linearer Reaktionen)

$$c(nt) = \mathbf{R}^{n} c(0) + (\mathbf{R}^{n} + \mathbf{R}^{n-1} + \mathbf{R}^{n-2} + \dots + \mathbf{R}) c_{D}.$$
(43)

In entsprechender Weise werden auch Folgen gleichbleibender Impulskombinationen (z.B. alternierende Dosisgaben) durch Potenzen der Reaktionsmatrizen dargestellt. Parameterimpulse und Konzentrationsimpulse zeitigen also ähnliche Effekte im Reaktionssystem. Der Unterschied besteht aber vor allem darin, daß bei Parametersprüngen die folgende Reaktion an die vorangegangene unter veränderten Bedingungen anknüpft, während bei Konzentrationssprüngen die Bedingungen ungeändert bleiben und nur eine Aufstockung der Konzentration erfolgt. Damit erhalten auch die Übergangsfunktionen unterschiedliche Verläufe.

6.5 Oszillationen, Frequenzfilterung, Resonanz

Bei periodischer Änderung der Parameter oder der Konzentrationen der Reaktionspartner führt das Reaktionssystem erzwungene Schwingungen aus. Die periodischen Änderungen betreffen dabei häufig nur einzelne Parameter oder Konzentrationspartner des Systems und brauchen durchaus nicht sinusförmig zu sein. Von solcher Art ist z.B. die periodische Beeinflussung des Reaktionssystems durch eine Impulsfolge.

Die Form eines Impulses wird durch ein ganzes Spektrum von Frequenzen repräsentiert, die nach der *Fourier*-Analyse der Funktion des Impulsverlaufes den überlagerten Sinus-Schwingungen zugeordnet sind, welche sich in der Frequenz, der Amplitude und der Phasenlage unterscheiden.

Die Impulsverformung eines dem System aufgeprägten Impulses wirkt sich bei den einzelnen Reaktionspartnern unterschiedlich aus; dementsprechend unterscheiden sich auch die aus der *Fourier*-Analyse erhaltenen Amplitudenspektren der Konzentrationen der einzelnen Komponenten.

Für einen Impuls f(t), der zum Zeitpunkt t = 0 beginnt und bei $t = \infty$ endet, wird das Spektrum der komplexen Amplituden durch die einseitige Fourier-Transformation beschrieben:

$$F(\omega) = \int_{0}^{\infty} \exp(-i\omega t) f(t) dt; \qquad \omega : \text{Kreisfrequenz.}$$
(44)

Bei einer Impulsfolge liefert die *Fourier*-Analyse das Spektrum mit der Grundfrequenz und den höheren Harmonischen. Die Intensität oder Leistung jedes Schwingungsanteils ist durch das Amplitudenquadrat gegeben, welches sich auch als Produkt der komplexen Amplitude $F(\omega)$ mit ihrer Konjugiert-Komplexen $F^*(\omega)$ darstellen läßt:

$$\alpha^2(\omega) = F(\omega)F^*(\omega). \tag{45}$$

Man kann nun die einseitige *Fourier*-Transformation sogleich auf die Übergangsfunktion des ganzen Konzentrationsvektors anwenden, welcher sich aus dem Reaktionsgeschehen nach Gl. (9) ergibt:

$$\boldsymbol{F}(\omega)\boldsymbol{c}(0) = \int_{0}^{\infty} \exp\left((\boldsymbol{K} - \mathbf{1}i\omega)t\right)\boldsymbol{c}(0)dt = (\mathbf{1}i\omega - \boldsymbol{K})\boldsymbol{c}(0).$$
(46)

Die reziproke Matrix $(\mathbf{1}i\omega - \mathbf{K})^{-1}$ vermittelt die Transformation des Anfangsvektors auf die Komponenten gemäß den in den Konzentrationsänderungen enthaltenen Schwingungen im Frequenzraum. Der Anfangsvektor hat hierbei auch die Bedeutung der Ausgangsamplitude einer aufgeprägten Schwingung.

Nach Multiplikation der reziproken Matrix $(\mathbf{1}i\omega - \mathbf{K})^{-1}$ mit ihrer Konjugiert-Komplexen erhält man den Leistungsübertragungs-Faktor des gesamten Reaktionssystems, welcher angibt, wie stark die Leistung einer aufgeprägten Schwingung gemäß ihren Frequenzanteilen in den einzelnen Komponenten des Systems in Erscheinung tritt,

$$\boldsymbol{F}(\omega)\boldsymbol{F}^{*}(\omega) = (\mathbf{1}\omega^{2} + \boldsymbol{K}^{2})^{-1}.$$
(47)

Dies ist eine Lorentzsche Frequenzfilterfunktion in Matrixdarstellung. Die skalare Version dieser Funktion ist aus der Elektronik als Tiefpaß bekannt [10], [11]. Man erhält sie durch die Fourier-Transformation der Übergangsfunktion bei der Entladung eines Kondensators über einen Widerstand, d.h. der Exponentialfunktion $f(t) = \exp(-t/RC)$. Die Matrixdarstellung Gl. (47) stimmt hiermit in der Analogie Skalar/Matrix formal überein, umfaßt aber sogleich das Frequenzverhalten des gesamten Reaktionssystems.

Die Fourier-Transformation ist als lineare Integraltransformation streng genommen nur auf lineare Transformationen und damit Reaktionen l. Ordnung anwendbar. Betrachtet man aber Abweichungen vom Gleichgewicht als in erster Näherung linear, was um so besser zutrifft, je kleiner die Amplituden sind, so kann die Fourier-Transformation auch auf nichtlineare Reaktionen angewandt werden. Während nach Gl. (47) das Frequenzverhalten ausschließlich durch die Koeffizientenmatrix bestimmt ist, spielen bei nichtlinearen Reaktionen die Werte der Konzentrationen der Komponenten eine bedeutende Rolle. Im Laufe der nichtlinearen Reaktion ändert sich das Frequenzverhalten des Systems. In diesem Zusammenhang sei nochmals an das bereits erwähnte Beispiel der Empfindlichkeit des Auges für Flimmern und Flackern erinnert, deren Grenzfrequenzen von der nichtlinearen Reaktion der Adaption (und anderen Faktoren wie Akkomodation und Umfeldbeleuchtung) abhängen.

Nach allem bisher Gesagten ist das Reaktionssystem ein anregbares Schwingungssystem; es hat also auch Eigenfrequenzen und Resonanzstellen, bei denen eine aufgeprägte Schwingung besonders große Amplituden der Konzentrationsänderung einzelner Komponenten erzeugt. Solche Resonanzen sind von pharmakologischer Bedeutung. Der Organismus führt Eigenschwingungen in Form von Biorhythmen aus, welche durch äußere Einwirkungen, mit denen er in Resonanz steht, aufrechterhalten werden. Die Resonanz kann durch arhythmische Einwirkungen (beim Tagesrhythmus z.B. Verlegung der Mahlzeiten, Schichtwechsel) empfindlich gestört werden. Mit Hilfe von Pharmaka kann man Biorhythmen unterstützen oder unterdrücken, je nachdem in welcher Phase der Schwingung man das Pharmakon verabreicht.

Das Gebiet der Schwingungen ist ein weites Feld und soll nicht in seinen vielfältigen Auswirkungen auf die Pharmakologie hier untersucht werden [12]. So sei jedoch noch bemerkt, daß die Analogien der Elektronik und Impulstechnik zur Reaktionskinetik in besonderer Anwendung auf die Pharmakologie bei weitem noch nicht ausgeschöpft sind. – Und um noch eine Bemerkung zu den Schwingungen zu machen:

Ungedämpfte Schwingungen eines realen physikalischen Schwingsystems sind nur möglich bei ständigem Ersatz der Dämpfungsverluste durch Energiezufuhr, Verstärkung und Rückkopplung in Resonanz.

Alle diese Mechanismen gebraucht auch der Organismus zur Aufrechterhaltung von Schwingungen.

Die reaktionskinetische Betrachtung auf der Grundlage einer überschaubaren mathematischen Formulierung vermag das Verständnis für die verwickelten Zusammenhänge der Reaktionen von Pharmaka im Organismus zu erleichtern und darüber hinaus auch die Algorithmen für die Berechnung von Dosierungen in der konkreten praktischen Anwendung zu liefern.

7 Zusammenfassung

In Fortführung früherer Arbeiten in dieser Zeitschrift wird gezeigt, daß der Matrizenkalkül vorteilhaft auch auf reaktionskinetische Problemstellungen in der Pharmakologie übertragen werden kann. Das bezieht sich vor allem auf die Begriffe Kommutativität bzw. Nichtkommutativität sowie auf das Impulsverhalten bei der Verabreichung verschiedener Pharmaka. Durch den Matrixkalkül ist eine adäquate analytische Formulierung und Behandlung des Reaktionsgeschehens gegeben. Der Reaktionsprozeß wird in positiver Zeitprogression und in der Zeitspiegelung verfolgt. Der Schwerpunkt der vorliegenden Arbeit wird auf die analytische Darstellung von Reaktionssystemen und Reaktionsprozessen gelegt, wobei das betreffende Differentialgleichungssystem als Vektortransformation formuliert wird. Die Reaktionsmatrix wird auch für zeitlich variable Übergangskoeffizienten betrachtet. Im Hinblick auf die in der Physik so grundlegenden Phänomene der Impulsausbreitung, der Oszillationen usw. werden die von Pharmaka herbeigeführten Wirkungen im Bild des Impulsverhaltens dargestellt.

Literatur

- Scheler, W.: Grundlagen der allgemeinen Pharmakologie. Gustav Fischer-Verlag Jena, 2. Auflage 1980
- [2] Knorre, A. W.: Pharmakokinetik Theoretische Grundlagen und praktische Anwendungen Akademie-Verlag Berlin, 1980
- [3] Melcher, H. und Gerth, E.: Analytische Behandlung und numerische Berechnung der Umwandlungsreihen von Radionukliden mit Hilfe von Matrixfunktionen. Wiss. Zeitschr. P\u00e4d. Hochschule Erfurt/M\u00fchhlausen 9 (1973) 21-30
- [4] Gerth, E.: Zur analytischen Darstellung der Schwärzungskurve II. Die Belichtungsmatrix, J. Signal AM 1 (1973) 259–268
- [5] Melcher, H. und Gerth, E.: Behandlung von Strahlungstransportproblemen mit Matrixfunktionen. Wiss. Zeitschr. Päd. Hochschule Erfurt/Mühlhausen 8 (1972) 3–10
- [6] Gerth, E.: Analytische Darstellung der Kinetik des Keimaufbaus beim photographischen Prozeß, Diss. (B), TU Dresden 1971
- [7] Gladtke, E.: Pharmakokinetische Methoden als prozeßkinetische Verfahren der kinetischen Pharmakologie. Nova acta Leopoldina 237 (1980) 233–248

- [8] Melcher, H.: Transmission und Absorption ein allgemeines Gesetz für ionisierende Strahlungen. VEB Deutscher Verlag der Wissenschaften Berlin, 1970
- [9] Gerth, E.: Zur analytischen Darstellung der Schwärzungskurve III. Die Reaktionstensoren des photographischen Prozesses. J. Signal AM 6 (1978) 421–439
- [10] Melcher, H. und Gerth, E.: Ein heuristisches Modell für Linienprofile. Exper. Techn. Phys. 25 (1977) 521–525
- [11] Melcher, H. und Gerth. E.: Darstellung von Linienprofilen durch Lorentz-Funktionen n-ten Grades. Exper. Techn. Phys. 25 (1977) 527–538
- [12] Melcher, H. und Gerth, E.: Darstellung von Schwingungsvorgängen als Transformationsproblem.
 Wiss. Zeitschr. Päd. Hochschule Erfurt/Mühlhausen 11 (1975) 67–71

Commutativity, time-reflection, and impulse-behavior of pharmacokinetic reactions

Horst Melcher¹ and Ewald Gerth²

¹ Pedagogic College ,,Dr. Theodor Neubauer", Erfurt-Mühlhausen, GDR

² Central Institute for Astrophysics of the Academy of Sciences of the GDR,

Potsdam

Abstract

Pharmacokinetics opens up concepts and examination methods of the general reactionkinetics for matters of medicine, specifically those of pharmacology. The reactionkinetics – originally developed for the specific problem of physical chemistry – is nowadays no longer bound to a certain discipline. It has, moreover, already turned into a multivalent instrument of the treatment of diverse and complicated problems of processes, so that it appears not only in natural sciences as for example in chemistry, physics and biology, but also in other areas like, e.g., in meteorology, populationstatistics, and even in social history.

In continuation of former works of the authors in other fields of physics, it is shown that the matrix-calculation can be applied profitably also to problems in the pharmacology. That refers above all to the concepts of commutativity and non-commutativity as well as to the impulse-behavior by giving different pharmacological drugs.

The main focus of the present work is put on the analytic representation of reaction systems and reaction processes. An adequate analytical formulation and treatment of kinetic reaction processes is given by the matrix-calculation, which implies the extremely important **non-commutativity** of multiplication of matrices. The reaction process is pursued in positive time-progression and in negative direction of time by **time-reflection**. The relevant differential equation systems are formulated as vector-transformations of the "concentration-vector" in the multidimensional "reaction-space".

The reaction-matrix is considered also for temporally variable transition coefficients. With the reference to such phenomena like the propagating and spreading of concentration impulses in the reaction medium, also oscillating reactions are represented as effects brought about by intermittently given pharmacological drugs, showing a characteristic **impulse-behavior**. Thus, biorhythms, periodical seasons of the year and the day, with averaging, resonance, and aftereffect, can be described analytically and – using special computer programs for the solution of nonlinear systems of differential equations – could be calculated numerically.

Publication

WISSENSCHAFTLICHE ZEITSCHRIFT DER PÄDAGOGISCHEN HOCHSCHULE "DR. THEODOR NEUBAUER" ERFURT-MÜHLHAUSEN Mathematisch-Naturwissenschaftliche Reihe, 19. Jahrgang 1983, Heft 1, S. 30–46 Eingegangen am 1. 11. 1982 SCIENTIFIC JOURNAL OF THE PEDAGOGIC COLLEGE "DR. THEODOR NEUBAUER" ERFURT-MÜHLHAUSEN Mathematical-scientific row, 19. Year 1983, Volume 1, p. 30–46 Received 1982, November 1st

Article available in German by the web-address: www.ewald-gerth.de/56.pdf
Inhaltsverzeichnis – Contents

3 Vorwort

- 4 Preface
- 5 Analytische Behandlung und numerische Berechnung der Umwandlungsreihen von Radionukliden mit Hilfe von Matrixfunktionen
- 22 Analytical treatment and numerical calculation of conversion series of radionuclides by means of matrix functions
- 23 Behandlung von Strahlungstransportproblemen mit Matrixfunktionen
- 42 Treatment of the radiative transfer by means of matrix functions
- **43** Lösung des stationären Strahlungstransportproblems für Energiestreuung mit Hilfe von Matrizenfunktionen
- 55 Solution of the stationary radiation transport problem for energy scattering using matrix functions
- 56 Darstellung von Schwingungsvorgängen als Transformationsproblem von Matrixfunktionen
- 68 Oscillations represented as a transformation problem of matrix functions
- 69 Ein heuristisches Modell für Linienprofile
- 75 A Heuristic Model for Spectral-Line-Profiles
- 76 Darstellung von Linienprofilen durch Lorentz-Funktionen n-ten Grades
- 88 Representation of spectral line profiles by means of the *Lorentz*-function of *n*-th degree
- 89 Kommutativität, Zeitspiegelung und Impulsverhalten pharmakokinetischer Reaktionen
- 108 Commutativity, time-reflection, and impulse-behavior of pharmacokinetic reactions

The entire booklet is available by the web-address: www.ewald-gerth.de/horst-melcher.pdf

109