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Abstract.1)
The structure of the stellar magnetic surface field is covered from direct
observation by many mixing processes. The discovery of the topographic
surface structure requires an inversion procedure but does not reveal the
origin of the magnetic field from which it is derived. Modelling of mag-
netic stars, however, has to start from the generating magnitudes and is a
matter of construction by a strategy of forward calculation. The model of
the star is fitted to the observed appearance of the real object by variation
of parameters and optimizing. The magnetic field strength on the surface
of the star – including the magnetic poles – is a derived magnitude, which
should not be taken as a parameter for modelling. At present time two
versions of magnetic modelling are discussed: 1. expansion of spherical
harmonics, 2. magnetic charge distribution. Both methods claim for the
application of parameters, which determine the magnetic field. In this
paper the question is investigated, what the generating and the derived
magnitudes of the magnetic field are. Tracing back the observed spherical
distribution of the magnetic field to its origin, one is led to the eigenval-
ues as the solution of Legendre’s differential equation. We regard the
eigenvalues as the generating magnitudes of the magnetic field, the physi-
cal quantities of which are the constituents of any vector field, namely the
sources and vortices, from which the field originates. This interpretation
is substantiated by graphical representations of magnetic maps with topo-
graphical features like poles – derived from the field-generating sources:
the virtual magnetic charges.
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1. Introduction

The magnetic field of a star can be observed only in integral light radiation,
which makes the recognizability of any details by many information deforming
processes impossible. For the reconstruction of the original surface distribution
from the final observational values all these processes have to be inverted.
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Conference Volume: www.sao.ru/hq/lizm/conferences/pdf/2003/2003−p152.pdf
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The difficulties bound to the generally ill-posed inverse problem are well-
known and have been considered by Khokhlova et al. (1986), who investigated
at first the distribution of chemical elements over the star’s surface by Doppler
imaging and later, the magnetic field structure. Nevertheless, the inversion
method has been developed successfully by Khokhlova herself and her follow-
ers (Piskunov 2000, Kochukhov 2003). The result of such an inversion of
observational magnetic field data is a topographic distribution of the magnetic
field over the surface with spotty character. The cartographic map of the field
structure is still a representation of comprised observation. Not regarding the
very valuable informative result – it is not clear at once, whether the often found
complicated structures are the magnetic field itself or have they to be attributed
to the distribution of chemical elements too. Here ends the reduction by in-
version. A further reduction to the origin of the magnetic field would be very
doubtful.

In contrary to the inversion, a straightforward calculation can be carried
out in any case. Assuming physically reasonable conditions, models might be
constructed, which are determined by parameters. A model is a simplified ab-
straction from the complexity of the real object. Therefore, the choice of such
parameters is very important, because they are the intrinsic magnitudes of a
causal process, from which any outward appearance is derived.

2. Modelling of stellar magnetic fields

A model of the magnetic field in a star needs at first a concept where it is
coming from. The reduction of observations mark the magnetic poles as con-
spicuous topographical points, which determine form and time dependence of the
phase curves of the integral magnetic field strength. Since we observe only the
magneto-informative atmosphere, it seems to be obvious to take the magnetic
field strength and the coordinates of the poles as parameters.

However, the field as a physical quantity of continuity cannot be generated
in the surface layer of the star. Thus, we expect its origin either in the interior
or the exterior of the star. So we ask for the intrinsic parameters of a stellar
magnetic model. – In any case, suitable parameters are needed, which reflect
the essential characteristics of the physical conditions.

In the past, two versions of modelling stellar magnetic fields have been
presented, which we will summarize briefly.

2.1. The Magnetic Multipolar Expansion (MME)

The modelling method based on a multipolar expansion of spherical harmonics
gives an analytical description of a function on the sphere, which is – in case of
a magnetic star – the distribution of the magnetic field strength over its surface.
The coefficients of the expansion (Legendre polynomials) are varied so, that
the surface distribution will be fitted to the observation. The physical mean-
ing of the coefficients needed for the analytical formulation is not explained.
From the mathematical point of view, the coefficients are the parameters of
the spherical functions. Because of the complicated mathematics of Legendre
functions the expansion is extended usually only up to the second degree, the
quadrupole. A truncated expansion can give the main view of the star’s map
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with the topographic sites of the poles, but it fails to describe a finer structure.
The calculation of the surface field distribution by central dipoles, quadrupoles,
etc. is restricted to the surface of the sphere. The magnetic surface field of a
decentered or an external dipole cannot be calculated. The multipolar expan-
sion method of modelling is an interpolating and approximation procedure for
fitting and informative compressing of the observational data to an analytical
representation. In this sense, it is highly developed and useful for the practical
reduction of observational facts, but it does not give direct information about
the origin of the magnetic field – that means, the underlying physics.

The modelling of magnetic fields in stars using Legendre’s spherical func-
tions has an old history. The first who used them for the formulation of the
magnetic field structure on the surface of a star was Deutsch (1970). Further,
we refer here to the papers of Oetken (1977, 1979), who modelled the star
as an equatorially symmetric rotator. Oetken relates to Krause & Rädler
(1980), who calculated the magnetic field structure of a star as generated by the
action of a dynamo. The solution of the hydromagnetic differential equations of
the dynamo is displayed as a series of Legendre functions. Of special interest
are the eigenvalues as the solution of Legendre’s differential equation, which
prove to be the generating magnitudes of the magnetic field. Thus, the dynamo
model is physically founded and leads immediately to an analytical description
by spherical harmonics.

Spherical harmonics constitute also the mathematical basis of the modelling
method of Bagnulo et al. (1996, 1998, 1999, 2001), which has been applied
to a large quantity of magnetic stars. It comprises the statistically straying
measuring values to a small set of parameters and gives a forecast of the phase
curves and the line profiles for all modes of polarized light. The reduction yields
field strength and coordinates of the magnetic poles on the surface, which are
adopted as parameters.

2.2. The Magnetic Charge Distribution (MCD)

The MCD-method of modelling is founded on a theorem of the potential theory,
according to which all potentialfields can be constructed as linear aggregates of
numerous fields of point-like sources. The vectorial magnitude field strength
is derived from the potential by the differential operator grad (gradient) or in
the case of a vector potential by the differential operator curl (rotor). A calcu-
lus of the differential geometry states, that all spatial vector fields can be built
up by linear compilation of the fields of numerous sources and vortices. This
holds for gravitational, hydro-dynamical, velocity-, radiation-, electrical, and –
as well – for magnetic fields. Sources are the local points, from which the lines
of force diverge. This includes also virtual sources, the field seems to diverge
from. The sources of the field might be located anywhere in the space. The
surface of a sphere – like any other plane – will be penetrated by the lines of
force. Thus, decentered dipoles and external field sources produce asymmetric
fields on the surface, which are calculable by a computer program with standard
algorithm for the spherical field of a point-like source. The sources as the field-
generating magnitudes are the solutions of Legendre’s differential equation,
the eigenvalues, which determine the field and can be used in the calculation as
parameters. The sources with their fields can also combine to complex sources.
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A magnetic dipole consists of two displaced magnetic sources of opposite charge.
Its magnetic moment with the surrounding vector field is a real physical mag-
nitude. Magnetic dipoles are the elementary bricks of any stationary magnetic
field in complex combinations of sources.

The MCD-method has been described by Gerth & Glagolevskij (1997,
2001, 2003) and applied (Glagolevskij et al. 1998, 1999, 2001) by the authors.
Use of this method have also made Khalack et al. (2001, 2002, 2003).

3. The parameters of the magnetic field

The term parameter is understood differently. We relate here to the mathemat-
ical sense of the parameter as a decision quantity, which distinguishes different
variants of the same general concept.

If we ask for the parameters of the magnetic field, so we have at first to
look for its concept. What we observe from the star, is its appearance. Likewise,
the reduction of observational data by inversion calculation to the distribution
of the magnetic field on the star’s surface shows the appearance of the star only
better, but does not reveal the origin of the field. A model is a hypothetical
concept, which has been thought up on plausible grounds and has to be fitted to
the appearance of the real object by variation of parameters and optimizing. A
parameter, however, cannot be taken from the appearance of the object because
it is a defining but not a derived magnitude.

Thus, also magnetic poles with their field strengths and coordinates can not
serve as parameters for modelling of magnetic fields with topographic structure
on the star’s globe. But we do not deny that the magnetic poles with their
typical surrounding field structure can define the following computation of the
integral magnetic field as parameters. With an extended model of an obliquely
rotating dipole, quadrupole, or multipole, the phase curve and the line profiles
are derived.

The parameters of the magnetic field should be taken from its physical
consistence where it is coming from: the sources and vortices, which are the
generating magnitudes - suitable as parameters.

4. The generating magnitudes of the magnetic field

There are two ways to define the generation origin:
1. Tracing back on the development path by inversion
2. Modelling by a reasonable hypothesis

and comparison of the outcome with the expectation
We start with the first way, which gives us certainty to identify the generating
magnitudes. After that, we use these original magnitudes as parameters for the
construction of a Magnetic Star Model:

4.1. The eigenvalues of the magnetic field

As known from mathematics, a function on the sphere can be described by
spherical harmonics, which is governed by the famous differential equation of
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Legendre:
(1− z2)

d2x

dz2
− 2z

dx

dz
+

(
n(n + 1)− m2

1− z2

)
x = 0 (1)

The quantities contained in this equation are:
n degree
m = – n . . . + n order index
z = cos ϑ function of azimuth angle

x = f(ϑ, ϕ) function of azimuth and longitude

The solutions of equation (1) are the coefficients Pm
n (ϕ, ϑ), called “associated

Legendre functions”, which are functions of the spherical coordinates ϕ (longi-
tude) and ϑ (azimuth) at a shell with radius r = 1. Insofar, they describe only
the spherical plane of a sphere or – in case of a star – the star’s surface.

Legendre’s differential equation is known in astrophysics – by the global
oscillation in a star (as the sun) – and in atomic physics – by the undulation
atomic model (Schrödinger’s equation). In both cases eigenvalue solutions
in the formulation by spherical harmonics play an important part. The typical
combination of the integer index n to n(n + 1) characterizes the wave or the
quantum number as a discrete quantity. This is caused by the requirement of a
standing undulation of the wave running on a circle around the sphere.

We do not like to give here a complete derivation of the spherical har-
monics, but it might be of interest, that Legendre’s equation (1) follows from
Laplace’s equation – the homogeneous partial differential equation for a sta-
tionary potential U

4U = 0 (2)

4 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 Laplace operator for Cartesian coordinates x, y, z

with the supposed potential function Fn in spherical coordinates

U = rnFn(ϑ, ϕ), (3)

where rn is an exponential function of the radius with the integer exponent n:

1
sinϑ

∂ sinϑ∂Fn
∂ϑ

∂ϑ
+

1
sin2 ϑ

∂2Fn

∂ϕ2
+ n(n + 1)Fn = 0 . (4)

We leave the complete derivation and the question “What are the generating
magnitudes of the magnetic field?” open to the interested reader. It was our
concern only to point to the fact, that the solution of Legendre’s differential
equation can be traced back to eigenvalues, which take on the form of potential
sources located in space.
But at first let us see, what the coefficients of the spherical harmonics are.

4.2. The magnetic field derived from spherical harmonics

With the separation concept
Fn(ϑ, ϕ) = eimϕf(ϑ) (5)

we obtain equation (1) in the formulation of the solution by Legendre’s asso-
ciated spherical polynomials. In case of a stationary potential the orthogonal
vectorial components of the magnetic field Br, Bϑ, and Bϕ are represented as
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an expansion

Br =
∑

n≥1

n∑

m=−n≥1

Am
n Qm

n (ϑ, ϕ) (6)

Bϑ = −1
2

∑

n≥1

n∑

m=−n≥1

Am
n

∂Qm
n (ϑ, ϕ)
∂ϑ

(7)

Bϕ = −1
2

∑

n≥1

n∑

m=−n≥1

Am
n

∂Qm
n (ϑ, ϕ)
∂ϕ

(8)

Am
n constant coefficients

Qm
n (ϑ, ϕ) = P |m|

n (cosϑ)cos mϕ
sin mϕ for m≥0

m<0

These formulae2 represent a row of multipoles, whereby the (multi)pole number
is the double of the degree n of the polynomial. The number of the required
constant coefficients Am

n is 2(2n+1). The row of multipoles starts by the dipole:
n = 1 dipole 6 constants
n = 2 quadrupole 10 constants
n = 3 sextupole 14 constants
n = 4 octupole 18 constants
. . .

The multipoles may be calculated for its special degree or summed up to the
highest degree required before truncation of the series. For practical purposes
the expansion should be truncated, because the terms of the series grow with the
degree in number and computation time of the polynomials – provided the series
converges sufficiently well. The degree of the expansion, of course, determines
the microstructure of the represented field distribution on the surface of the
sphere. The truncation of the expansion of multipoles, however, is a violation
of the physics of the magnetic star. All multipoles of the expansion are centered
by definition. For a decentered dipole, the polynomials up to high degrees do
not disappear and must be taken into account.

But what is the physical meaning of the coefficients and the spherical poly-
nomials for the magnetic field? – If we want to construct a desired field dis-
tribution on the surface of the sphere, then we have to choose the coefficients
arbitrarily – fitting them by trial and error. In principal, the coefficients are the
true parameters, from which the field strength on the surface is derived. This is
valid, too, for the field strength on the magnetic poles, which, therefore, cannot
be used as parameters for the modelling of magnetic fields on stars.
So we conclude: The coefficients of the expansion of spherical harmonics are not
the generating magnitudes of the stellar magnetic field.

2The equations (6-8) represent a version reduced only to the stationary potential field, which
have been placed to our disposal by courtesy of Prof. K.-H. Rädler from the Astrophysical
Institute Potsdam. The algorithm for the computation of the associated Legendre polynomials

P
|m|
n (cos ϑ) (written by Gerth) allows the calculation for any degree n and order m up to the

finite accuracy of the computer. The recursion algorithm avoids the overflow of too high
numbers, which occur by the faculty procedure.
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Figure 1. Mecator maps and globes of the magnetic surface field strength,
calculated with Legendre spherical harmonics (computer code written by E. Gerth).
Colored zones: iso-areas of equal intervals of field strength and altering polarity.
Top: Octupole in the equatorial belt. Only coefficient A−4

4 = 1, other Am
n = 0

Bottom: Octupole, tilted to the equator by 40◦. Legendre coefficients:
A−4

4 = 1, A−3
4 = 3, A−2

4 = 6, A−1
4 = 9, A0

4 = 1, A1
4 = 0, A2

4 = 0, A3
4 = 0, A4

4 = 0

The program for the computation and graphical representation of the field
distribution on the surface of the sphere enables one to perform numerical exper-
iments. This was the way, the coefficients Am

n were found for the computation
of Fig.1. Variation of the coefficients by trial until fitting and comparison of
the given and the calculated maps is some kind of graphical correlation. A
correlation algorithm is implemented also in the computer program.

We used the possibility of graphical representation of the field distribution
for the investigation of the effect, the single coefficients of the spherical harmon-
ics make on the structure of the map. We found, that the map for any coefficient
can be produced also by a magnetic dipole located inside the sphere. Thus, the
spherical coefficients are identified as magnetic moments, which can be arranged
in an expansion like spherical harmonics. Such a set of magnetic dipoles, how-
ever, does not reflect the real physics and cannot improve our knowledge about
origin and generation of the magnetic field.

Spherical harmonics describe an analytic function relating to the sphere
plane as a diapason of definition, which is analytically represented by an ex-
pansion of Legendre’s associated spherical polynomials. The description of
the stellar magnetic field is valid only for the star’s surface – neither inside nor
outside. Spherical harmonics are not appropriate for magnetic modelling!
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Nevertheless, spherical harmonics are an excellent mathematical calculus
for the analytical description of functions on the surface of the sphere. Its
awkward complexity, however, makes comprehension, requirement, and practical
application difficult, so that we look for some appropriate simplifications.

Let us, therefore, go over from Legendre’s spherical functions to the
better-known case of trigonometrical functions. Then the two-dimensional dis-
tribution on the surface of the sphere with coordinates ϑ, ϕ is reduced to an
one-dimensional oscillation as a process in time t.

4.3. The oscillation equation compared to Legendre’s equation

If we specialize Legendre’s differential equation (1) for a constant azimuth
angle x = cos ϑ = const, we get the oscillation equation for an oscillating ring
with eigenfrequencies of the overtone row.

We go a step further and derive from Legendre’s equation (1) immediately
the differential equation for a single mechanical oscillator, replacing all in this
case constant magnitudes by the appropriate mechanical ones

M =⇒ 1 - z2 mass
R =⇒ z friction resistance

D =⇒ n(n + 1) - m2

1−x2 direction force ,

then we have:
M

d2x

dt2
− 2R

dx

dt
+ Dx = 0. (9)

With the functional concept for a solution
x = aeλt (10)

we get two possible eigen-solutions:

λ1 = − R

M
+

√
D

M
− R2

M2
λ2 = − R

M
−

√
D

M
− R2

M2
. (11)

The general integral of the differential equation is the sum of all solutions, which
is in the present case a damped oscillation, represented as a trigonometric row
with two terms of amplitudes a and b

x = e−
R
M

t(aeiωt + be−iωt) . (12)

The solution is determined by the eigenfrequency:

ω =

√
D

M
− R2

M2
(13)

The generating magnitude of the oscillator, which determines the eigenfrequency
ω, is obviously D/M . The damping term R/M varies slightly the eigenfre-
quency.
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Numerous oscillators – as we have in a musical instrument like a piano –
superpose their oscillations. A triad, for instance, consists of three eigenfrequen-
cies. If the sound of the triad is analyzed by Fourier analysis, then it would be
traced back to the three eigenfrequencies and its generating magnitudes – mass,
length, and tension of the string.
But also the reversal is possible: If we know the generating magnitudes (as an
instrument builder does), then we have the eigenfrequencies already in advance
and can construct and overlay all single oscillations to a sound like the triad.
This is the synthetic way – as we do by constructing magnetic fields out of their
potential sources.
The analogy between spherical harmonics and trigonometric functions is sur-
prisingly close and can even be used for many practical applications. We list
here some common properties:
1. Formulation as differential equations
2. Reduction to eigenvalues
3. Solution as expansion of functional terms

(functions of eigenvalues – eigenfunctions)
4. Linearity and orthogonality
5. Linear superposition
6. Transformation to the complexe projection space

(Laplace-Transformation)
7. Inverse analysis procedures

a) Fourier analysis
b) “Legendre” analysis

5. The elementary field configuration of sources and vortices

The MCD-method uses the intrinsic eigenvalues as the original generating mag-
nitudes positioned in space, from which the magnetic field is derived. Usually, a
complex field configuration is a derivation of a combination of eigenvalues, which
have as solutions of a differential equation the property of linear aggregates.

Since we know, that a complex field is a linear superposition of numerous
fields, we can reduce the field to its elementary constituents. Therefore, we
investigate a single eigenvalue as a generator for an elementary field in space.
We can expect, that such an elementary field and its analytical description
has the utmost simple form suitable for generalization and programming on a
computer.

The straightforward calculation is the synthetic way to build any field con-
figuration out of the generating magnitudes.

5.1. Derivation of the magnetic monopole field from its source

The origin point of the field is located in spherical coordinates ϕ longitude, δ
latitude, r radius-fraction, in the distance rR from the center of the sphere with
radius R. The three orthogonal components Br, Bϕ, Bδ of the field vector in
the center of the surface element 4S are given by equations (18-20).
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Figure 2. Geometry of a point-like source in a sphere.

The star is orientated in the Cartesian coordinate system with its rotation axis

coinciding with the z-coordinate, the observer looks at by the inclination angle i.

In Cartesian coordinates x, y, z we have with the unity vectors i, j, k the
gradient (Gerth & Glagolevskij 1999, 2001). From the scalar potential U the
field strength is derived by the linear differential operator gradient

B = −gradU . (14)

The gradient is a vector of 3 components, which span a space with 3 orthogonal
unity vectors as Cartesian or spherical coordinates.

gradU =
∂U

∂x
i +

∂U

∂y
j +

∂U

∂z
k . (15)

Likewise, we have for each point of the sphere in the polar orthogonal system of
radius r, longitude ϕ, and latitude δ the gradient

gradU =
∂U

∂r

dr

dx
i +

∂U

∂r

dr

dy
j +

∂U

∂r

dr

dz
k . (16)

If we consider only the one-dimensional case using polar coordinates with radius
r and simplify the constant with Q to C = − Q

4π , then the potential

U = −C

r
yields the gradient

dU

dr
=

C

r2
. (17)

The magnetic monopole charge is located anywhere inside (or outside) the star
and produces a magnetic field as shown in Fig. 3.
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Figure 3. Map and globe of the field structure of an eccentric monopole on the surface
of a sphere. The field of a monopole is determined by four parameters (three local
coordinates x, y, z and charge Q). A monopole of unit charge is located at fractional
radius r = 0.5, longitude ϕ = 90◦, and latitude δ = 45◦.

The differential quotients, that give the gradient along the 3 orthogonal
polar coordinates, are:

Br = ∂U/∂r = (C/r3)[cos δ(cosϕ + sin ϕ) + sin δ] (18)
Bϕ = ∂U/∂ϕ = (aC/r3) cos δ(cosϕ− sinϕ) (19)

Bδ = ∂U/∂δ = (aC/r3)[cos δ − sin δ(sinϕ + cosϕ)] (20)

These equations are the basic relations for the calculation of the magnetic field
strength distribution over the star’s surface for a single monopole. The differen-
tial quotients represent the 3 coordinates of the magnetic field at the surface of
the star, which constitute the field vector. The mapping of the magnetic surface
structure relates to these values.

5.2. Construction of a magnetic vortex field

Like the gradient for the magnetic dipole, the calculation of the field strength
for the magnetic vortex is based on the linear differential operator curl.

A vortex (Gerth & Glagolevskij 2003) constitutes the closed magnetic
lines of force around an axial vector with origin at spherical coordinates r, ϕ, δ
and direction determined by the spatial motion of an electrical charge through
Cartesian space. The three vector components of the electrical current I, with
origin at Cartesian coordinates x, y, z on the sphere with radius r, can be
written in spherical coordinates also with three parameters: the magnitude of
the current I, and λ, the horizontal component and ϑ, the azimuthal component.
The field strength of a vortex is derived by the vectorial differential operator curl:

curlI =
(

∂Iz
∂y

− ∂Iy
∂z

)
i +

(
∂Ix
∂z

− ∂Iz
∂x

)
j +

(
∂Iy
∂x

− ∂Ix
∂y

)
k (21)

i, j, k Cartesian unit vectors; U potential, I electrical current with components Ix, Iy, Iz
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Figure 4. Map and globe of the field of an eccentric vortex on the surface of a
sphere. Solid lines: positive region; dotted lines: negative region. The field of a
vortex is determined by six parameters (3 local, 3 electric). The fractional radius
is r = 0.5, the longitude ϕ = 90◦, the latitude is δ = 45◦ and Ix = Iz = 0, Iy = 1.

The partial differential quotients of the Cartesian components of the cur-
rent, Ix, Iy, Iz, are calculated in the same manner as the differential quotients of
the potential U corresponding to equation (5) with terms like equations (18-20).

We do not pursue further the construction of a magnetic field by vortices,
because the stationary field is built up only by the gradient of the potential. Here
we state this possibility for completeness. Evaluating Maxwell’s equations as
for the dynamo theory (Krause & Rädler 1980, Rädler 1995), the solution of
the transformed differential equation of continuity leads to sources and vortices
as eigenvalues.

In some cases, the computation of fields with closed lines of force might be
convenient, for instance, modelling the magnetic loops in the solar atmosphere
and the corona.

In any case, we have to add the vortices with their parameters to the gen-
erating magnitudes, from which a magnetic field is derived.

6. Superposition of magnetic fields of numerous sources

The possibility of linear superposition of magnetic fields can be taken as lucky
coincidence. All complex field configurations are composed of elementary field
generators requiring for the computation the same standard algorithms, which
are run repeatedly for all positions in space.

6.1. Virtual sources

The positions of field generators in space are commonly points. Thus, we have
to assume also for the magnetic field point-like sources. The magnetic lines of
force around a moving electrical charge – an electric current – are closed, after
the famous law of Biot and Savart. Magnetic charges concentrated in points,
however, seem to violate physics – an objection, raised to the authors frequently.

We mentioned already, that the assumption of point-like sources is a re-
quirement of the computer program used for the calculation. But are magnetic
charges as sources for the magnetic field wrong at all? –
The magnetic field, of course, obeys the physical laws of all fields with common
properties, so that we state: All fields originate from sources and vortices.
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If we trace back the lines of force in any volume element of space by tangen-
tial elongation to their crossing point, then we hit a virtual source, where the
lines seem to come from. This is in analogy to the virtual light sources in optics,
which we see behind a mirror or a lens. In case of a monopole field the situation
is clear: All lines of force are directed on straight radial lines to the center of a
sphere, so that virtual and real sources coincide. The lines of force converge to
the center and diverge from the center. Mathematically, this geometrical con-
stellation is described by the differential operator divergence, which gives the
balance of incoming and outgoing lines of force through the closed surface of a
volume element. If a source is contained within the volume element, then the
divergence does not disappear,

divB 6= 0 . (22)

For a sphere, the convergence of the lines of force to the center is quite clear.
However, equation (22) holds also for every closed surface around the source,
also even for a source decentered in the sphere. Moreover, equation (22) holds
for many sources enclosed in the volume – as a consequence of the superposition
theorem of solutions of differential equations.

So we can take the expressions divergence and its counterpart convergence
word for word: The lines of force seem to diverge from sites, whose real existence
is not known in advance, so that we can call them generally virtual sources.

6.2. The magnetic dipole

Combinations of magnetic sources – so as the magnetic moment of a magnetic
dipole – are also generating magnitudes, from which a complex field is derived.
In analogy to an electric dipole, we construct a magnetic dipole by two magnetic
charges Q1 = Q and Q2 = –Q of opposite polarity in a distance l from each
other. The product

M = Ql (23)

is an axial vector with a surrounding characteristic magnetic vector field, the
magnetic moment. We introduce here the common case of a magnetic moment
with a distance l > 0. The infinitesimal case l → 0 does not change the value of
the magnetic moment, the magnetic charges Q1 and Q2, however, would grow
to infinity. This is the mathematical dipole, the field of which is assessed as the
normal dipole field .

The magnetic dipole is in any case a real physical quantity. So, also a rigid
compound of two oppositely charged sources, like a rod magnet with a north
pole and a south pole, is a magnetic dipole. A steel magnet is composed of
micro-magnets with atomic dimensions. The atomic magnetic moment (Bohr’s
magneton) produces a dipole field by the orbital movement of the electric charge
of the electron around the nucleus. In macro dimensions also an electric current,
circulating in a loop, makes a dipole field with a magnetic moment. The differ-
ence to the two-sources-dipole is only the inner structure, where all field lines
penetrate the plane spanned by the loop without crossing each other. The nar-
rower the loop, or the closer the two magnetic charges, the more both variants
of dipole fields coincide with growing distance from the center.
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Figure 5. Demonstration of a dipole with virtual sources.
An electric current flowing through a loop produces a magnetic field configuration
with closed lines of force (solid lines), which penetrate the plane of the loop
without crossing. The diverging lines of force (dotted lines) can be traced back
to their origin as if it was a dipole with virtual sources – in analogy to virtual
images in optics.

Figure 6. Mercator map with globes to the phases 0.25, 0.5, 0.75, and 1.00 of the
magnetic field with the surface elements arranged as a matrix. Parameters:
Charge Longitude Latitude Radius-fraction

Q1 = +1 ϕ1 = 90o δ1 = +45o r1 = 0.1
Q2 = – 1 ϕ2 = 270o δ2 = – 45o r2 = 0.1

The magnetic charge Q and the radius r are given in relative units.
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Fig. 5 demonstrates schematically the structure of the lines of force for a
dipole of a circulating current compared with the corresponding dipole consisting
of a couple of magnetic charges. The distance of the charges and the diameter of
the loop have the same dimensions, within which the structures of the current-
based and the charge-based dipoles differ most conspicuously. For a replacement,
this region should be excluded. The lines of force, coming from the outer region,
are directed on regular circles to its crossing point where they are focussed in the
sites of the virtual sources in analogy to optical image projection. The focussing
to the virtual source might not be sharp and can have a distribution like a caustic
in optics. Then we take the point of maximal concentration of field lines as the
best approximation of the magnetic dipole modelled by magnetic charges. The
difference between the two modes of magnetic dipoles disappears for dimensions
of the electrical circuit or the distance of the charges being small to the radius
of the field strength plane. This is obvious for atomic dimensions of elementary
magnets viewed in macro-cosmos.

In Fig. 6 the cartographic map and globes in four phases are shown of a
central magnetic dipole derived from two separated magnetic charges of opposite
polarity. The sources are arranged symmetrical to the center as a central dipole.
Only for dipoles with axes through the center the coordinates of the magnetic
poles on the surface ϕ, δ agree with those of the sources, which is not fulfilled for
anyhow transversely decentered dipoles. The calculation of the magnetic surface
field by spherical harmonics is confined only to central dipoles. Generally, the
magnetic field strength – including the poles – is derived from the generating
magnitudes: the magnetic sources.

The magnetic dipole in any form can be regarded as an elementary unit
defined by the vectorial magnetic moment with its magnetic field. Thus, also the
magnetic dipole moment is a generating magnitude itself, which is the elementary
brick to build any magnetic body by composing the magnetic moments.

6.3. Magnetic multipoles

Magnetic sources can formally be distributed in space arbitrarily. However, to
preserve the connection to physics, at least the condition for a l l charges Qi∑

i

Qi = 0 (24)

has to be respected. Moreover, the coordination of pairs with opposite but
absolutely equal charges like pairs should be kept together. So we can construct
all multipoles by spatial arrangements of dipoles.

The magnetic dipole moment is an axial vector and obeys all rules of vector
algebra. Combination of dipoles to multipoles is vector addition of the magnetic
moments. A quadrupole can be combined by two dipoles. Two central dipoles
yield again a central dipole with a magnetic moment following from the resultant
of a vector parallelogram. The resultant poles lie between the poles of the
summand moments. The effect of addition of magnetic moments on the map is
calculated and demonstrated graphically by Gerth & Glagolevskij (2002).

It should be emphasized that the topographic structure of the resultant
dipole field gives no information about the vector summands, because the poles
are areas of the surface field, and therefore, they are derived from the generating
magnetic moments.
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6.4. Super-multipoles

The superposition of magnetic fields is a possibility to sum up numerous fields
using for the calculation repeatedly the same standard algorithms.

Correspondingly to the magnetic charges the elementary magnetic dipoles
may be arranged arbitrarily within the stellar body by position and by direc-
tion. The combination of elementary dipoles enables one to model different
magnetic bodies: rod, cubic, cylinder, ellipsoid etc. In principle, this is valid
also for macro-magnets and elementary (atomic) micro-magnets. The density of
elementary dipoles determines, of course, the required computation time. The
linear superposition allows also to divide the ensemble into subgroups. The pos-
sibilities are infinite. We will present here only an example for a field structure,
which deviates from the normal dipole field. Especially interesting is the field of
an area of a circle, set with elementary dipoles and forming a “magnetic sheet”.

Figure 7. “Super-multipole” of 80 dipoles as double layer of positive and negative
monopoles.
The grating looks illow-like and empty in the middle because of the shifting of
the charges. All dipoles have equally two oppositely charged field sources.
Each dipole has a distance of the 2 point-like charges of 0.01 R (160 points).
The dipoles are set within the circle r = 0.5 R in a grating of 10 × 10.

Figure 8. Mercator-map and globe of the circular magnetic sheet
approximated by 80 dipoles, represented with the cartographic coordinates of the
sources ⊕ ª and iso-magnetic lines.
The sheet lies as a circular disk in the x,y-plane of the star with half of the stellar
radius in the center – tilted by 30◦ to the x-axis and to the y-axis.
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With an arrangement of dipoles as Fig.7 we can construct a “super-multipole”
as an entirety of predetermined form, using elementary magnetic dipoles like
“bricks” for a building. The resulting field structure as shown in Fig.8 is
generated by and derived from the magnetic sheet as an entire field generator.
Such a magnetic field as that of a sheet is produced by a circularly streaming
electric current, as we can assume circling in the star both in cases of a stellar
dynamo and of a frozen-in relict magnetism.

We come back to the philosophy of the MCD-method relating to a definite
theorem of the potential theory, according to which any field configuration is
produced by superposition of the fields of numerous point-like sources.

7. Conclusion

The discussion on two current versions of modelling stellar magnetic fields con-
cerns the physical foundation and the origin for assessment and practical use.
The requirement of reasonable parameters for calculation rises the rather philo-
sophical question: What was first – the magnet or the magnetic field? We tried
to investigate the causal connection between generating and derived magnitudes
by comparison of the two methods of magnetic modelling. Therefore, we out-
lined their physical and mathematical foundation briefly and looked for essential
common and distinguishing characteristics.

Despite both methods represent different aspects of the item, they have
an intrinsic logical connection without any contradiction. The link between
the methods are the eigenvalues, which are seen from one side as solutions of
Legendre’s differential equation, and from the other side as the generating
magnitudes. The decision, which method is to be applied, depends on the
purpose. There are good prospects to elaborate a common theory and to bring
both methods together. In any case, the development has not come to an end
yet, and the possibilities of application are still not exhausted.
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