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Abstract.1) A model of the magnetic field of the star βCrB is con-
structed by the method of the “Magnetic Charge Distribution”. The
magnetic field is described by superposition of two decentered dipoles,
which are arranged in the equatorial plane perpendicularly to the axis
and oppositely directed to the center of the star. The dipoles form an
irregular quadrupole and produce on the surface four magnetic spots
with a maximal magnetic field strength at the poles of Bp = 14.5 kG.
The angle of declination of the rotation axis to the line of sight has been
ascertained by the quadrupole model to i = 13o. In consideration of all as-
pects the idea is advanced of very strong influence of an inhomogeneous
distribution of chemical elements onto the measurable phase curves of
the effective magnetic field. Apparently, the star has passed a convective
phase in an early stage of evolution.
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1. Introduction

The chemically peculiar CP-star βCrB (HD 137909, F0p) is one of the most in-
vestigated magnetic stars because of its brightness and sharpness of the spectral
lines. Stibbs (1950) and Deutsch (1954, 1958) explained the variability of the
observed integral magnetic field strength with a period of 18.497 d (Steinitz
1964, 1967) by a model of an an obliquely rotating magnetic dipole, which is
rigidly bound to the stellar body and might be shifted off the center of the
star (Landstreet 1970). Deutsch (1970) was the first to describe the typi-
cal spherical asymmetry by moments of dipoles, quadrupoles etc. of spherical
harmonics.

An early attempt to explain the phase relation of the effective field Be by
an equatorially symmetric rotator model has been done by Oetken (1977).
She derived from the shape of the phase curve a prevailing quadrupole moment
over the dipole moment by u20/u10=2.0.

Modelling of the magnetic field of βCrB has been done also by Bagnulo
et al. (1998, 2000, 2001), who describe the stellar surface field by a second-
order expansion of spherical harmonics on the base of a centered dipole plus a
non-linear quadrupole.
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In the present article the magnetic field structure of βCrB is analyzed by
the modelling method of the “Magnetic Charge Distribution” (MCD), which is
described by Gerth & Glagolevskij (2000) and applied to real stellar objects
by Gerth et al. (1998, 1999, 2000, 2001, 2002).

The magnetic charges are treated analogously to the electric charges. This
is advantageous for the computation of the spherical field of a point-like source.
The idea of the construction of the stellar magnetic field out of its generating
sources has been adopted by Khalack et al. (2001, 2002, 2003), who came to
the same conclusions as we did before.

2. Modelling by the MCD-method

The modelling method of the “Magnetic Charges” gives a description of the
magnetic vector field on the star’s surface outside and inside the star. So it
would be possible to trace the lines of force back from the surface somewhat
into the interior, keeping in mind, however, the limitations of the model in the
vicinity of the sources. Sources outside the star, like orbiting magnetic bodies
of a binary system, can influence their magnetic field onto the atmosphere on
the surface of the main star.

The MCD-method relates to single field sources with “magnetic charges”,
which are surrounded by spherical magnetic fields. Such sources might be dis-
tributed anywhere in the space. A spherical body like a star shows to the
observer its magneto-informative surface, which is penetrated by the lines of
force. Since single magnetic charges do not exist in reality, we take them as
virtual sources - in analogy to the virtual light source in optics, from which the
light seems to diverge (after a mirror or a lense). A couple of two oppositely
charged sources, however, is physically relevant as a magnetic dipole. The fields
of numerous dipoles superpose linearly to irregularly arranged quadrupoles and
multipoles rendering all possible field structures. Such multipoles are arrange-
ments of field sources and should not be mistaken as a derivation of the Legendre
coefficients in a series of spherical harmonic functions.

The vectorial field of a point-like source is calculated for any point in the
surrounding space and, therefore, for any geometrical body like the sphere of a
star, including its anywhere positioned surface - in contrast to the calculation of
the field by means of spherical harmonics (see Oetken 1977, Bagnulo 2000,
2001), which relates only to the surface of a sphere. This means, that the calcu-
lation of a decentered or an outside the star located dipole cannot be performed
by spherical harmonics.

A special standard algorithm calculates the field strength as the gradient of
the potential of the charged source - making dispensable the use of Legendre′s
spherical functions for MCD-modelling of stellar magnetic fields.

3. The observational results used for modelling

The phase relations of the effective (mean longitudinal) magnetic field strength
Be and the surface (mean field modulus) magnetic field strength Bs taken by
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some authors differ heavily. This is shown in the paper of Leone & Catan-
zaro (2001), where different phase curves are drawn together. The curves show
systematic deviations up to 1 kG, although the inner accuracy of the measure-
ments by any of the authors is essentially higher. Thus, one has to be cautious
to compile simply the data. We relate the modelling only to homogeneous data
sets.

From all available observational data we chose the phase (P ) relations Bs(P )
from Wolff & Wolff (1970) and Mathys et al. (1997) (Fig 1b, 2a). The
first data are taken from old photographic observations by the lines of Cr, Ti,
and Fe. The second data were obtained by a line of Fe II (6149.2 A) with a
CCD-camera. Further we employ the phase curves Be(P ) with magnetic field
measurements of the hydrogen line Hβ by Borra & Landstreet (1980) (Fig.
1a, 2b). A third data set was taken by Wade et al. (2000) using Fe-lines, which
will be analyzed separately and compared with the other results (Fig. 2c).

All observational phase curves are arranged using the ephemeris after Kurtz
(1989)

JDmagnetic max = 2434204.70 + 18.4868 E.

Relating to the representation of the observational data in Fig. 1 and Fig. 2,
let us consider some properties of the phase relations that have an effect on the
model of the magnetic field in the case of βCrB. The small amplitude of Bs(P )
leads to a small angle of declination i. At the other hand, the angle i effects
on the amplitude of the calculated relation Be(P ). The inclination angle i =
13o found by ours corresponds best of all to both phase relations. The small
magnitude of Be < 1 kG together with the large quantity Bs ≈ 5.5 kG argues
for the assumption, that the magnetic poles are located at the limb of the visible
disk, e.g., close to the equatorial plane. The star is visible almost from its pole.

3.1. The dipole model

In order to construct a magnetic dipole, the position of the two “magnetic
charges” of opposite polarity inside the star is defined by a procedure of succes-
sive approximations.

At first we select arbitrarily a magnetic moment M = Qr (Q - magnetic
charge, r - its distance from the center of star as fraction of the radius), the longi-
tude λ, the latitude δ, and the inclination i to the line of sight. For the centered
dipole model with positive (+) and negative (–) charges by equal distances of
the sources from the center yields:

r+ = r−; λ+ – λ− = 180o; δ+ = – δ−.

The fitting of the observed to the calculated phase relations Be(P ) and
Bs(P ) is carried out by the least squares optimization method. It comes out,
that the position of the positive charge in βCrB is λ = 0o, δ = + lo, and that of
negative charge is λ = 180o, δ = – 1o. The maximal field strength at the poles
is calculated for the dipole model to Bp = 9.4 kG. The phase curves derived
from the model are shown in Fig. l by solid lines. In principle, the dipole model
requires two maxima of Bs, which should pass through a central meridian of the
positive and negative magnetic poles. But we see, that maximum and minimum
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of the relation Bs(P ) appear in the moment when Be ≈ 0, instead of the moment
when Be has its maximum. This consideration and the test calculation show,
that the structure of the magnetic field of βCrB cannot be a dipole one – as it
was asserted already by Bagnulo (2000), who demanded for the representation
of the surface magnetic field of βCrB the addition of a non-linear quadrupole.

3.2. The quadrupole model

The disagreement of the computed to the observed phase curves underlying the
dipole model shows that βCrB has a magnetic field of complicate structure.

The model, comprising the Bs and Be data from Fig. 1a and Fig. 1b, is
calculated using the following parameters:

Table 1
No q r λ δ

1 – 0.3 351 – 6.5
2 + 0.3 12 0
3 – 0.3 176 5.3
4 + 0.3 196 0

All charges have the same relative value q = 1, which is fitted to the observed
magnetic field strength on the surface. The magnitude of the magnetic field
equals 14.5 kG on the magnetic poles. The distance of the charges from the
center is r = 0.3 of the stellar radius. We see in Fig. 3 that both dipoles are
arranged more or less in the equatorial plane symmetrically to the center of the
star. The inclination angle has been determined by variation of parameters and
iterative approximation to i = 13o.

For comparison we add in Fig. 2 still recent observational data from Wade
et al. (2000), which are presented in Fig. 2c. The fitting of the curve could
be achieved by a minor variation of the parameter δ (δ1 = – 6.6, δ3 = 5.0), the
effect of which proves to be very sensitive.

The distribution of the magnetic field strength over the surface is repre-
sented in Fig. 4. The double dipole model describes well the common config-
uration of the magnetic field, but in detail there may be some differences. So
we see in Fig. 2b a small peak in the negative extremum of the observed phase
curve Be(P ), which is smoothed in the calculated curve. In the paper of Wade
et al. (2000) a relation Be(P ) without such a peak is given, obviously because
of the more accurate measurements carried out by new observation and reduc-
tion techniques (Fig. 2c). The smoothed phase curves in Fig. 2b and Fig. 2c
deviate a bit by the amplitude, the reason of which is not known yet (maybe an
instrumental effect). In Fig. 2a, representing the function Bs(P ), the observa-
tions show a broad minimum, which is not contained in the calculated relation.
However, the measurements of Wolff & Wolff (1970), marked in Fig. 2a by
asterisks, contradict to this assertion. Those differences have to be attributed
to the uncertainties of the different sets of measurements.

Some significant differences of the curves drawn after the model and the
ones obtained by observation can be explained by two reasons:
1) The relation Bs(P ) has been derived from the metallic lines, which are dis-



A quadrupole model of the magnetic field of βCrB 5

Figure 1. Phase relations for βCrB, applying the dipole model.
dots - observations
a) effective magnetic field Be (Borra & Landstreet, 1980)
b) averaged magnetic field on the surface Bs

asterisks - data from Wolff & Wolff (1970)
dots - data from Mathys (1997)
solid lines - calculated phase curves

The mode11ing of some other stars – for example HD 126515 (Glagolevskij
& Gerth 2000) – has proven, that such a situation is possible in the case of
an arrangement of two decentered dipoles. But for βCrB a much more complex
situation has turned out.

The model of a decentered dipole results in an amplitude of Bs larger then
the observed one. By the method of iterative approximation we found, that
both observed curves can be explained assuming the presence of two oppositely
directed dipoles, whose magnetic charges are located at the distance of 0.3 stellar
radius from the center of the star (see Fig. 3). We call such a combination of
two arbitrarily arranged dipoles an irregular quadrupole.
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Figure 2. Phase relations for βCrB, using the quadrupole model.
dots - observations
solid lines - calculated phase curves,
a) averaged magnetic field βCrB on the surface Bs

asterisks - data from Wolff & Wolff (1970)
dots - data from Mathys et al. (1997)

b) effective magnetic field Be (Borra & Landstreet, 1980)
c) effective magnetic field Be (Wade et al., 2000).
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Figure 3. Scheme of the distribution of the magnetic dipoles
inside the star (view from the pole)

tributed inhomogeneously.
2) The magnetic field possesses a more detailed fine structure than that one
obtained by ours.

The first reason seems to be more probable. The phase curve Bs(P ) in Fig.
2a has a maximum at the phase 0.25 with Be ≈ 0. Such a situation may be
in the only case, when the region between the oppositely arranged poles passes
through the meridian and the magnetic charges are located under a small angle
λ of longitude.

The configuration found for βCrB consists obviously of two oppositely di-
rected dipoles. Hereby, the axes of the dipoles are not strictly parallel. The large
distance between the dipoles of 0.6 of the stellar radius confirms the idea of the
existence of two individual dipoles, which combine to a quadrupole. Assuming
other distances of the dipoles from the center, the accordance of the calculated
and the observed phase relations becomes worse.

The phase relation could be influenced still by other phenomena. Thus, in
the papers of Wolff (1978) and Romanyuk (1986) some characteristics of the
star βCrB were already mentioned, in particular the phase shift of the magnetic
curves derived from the lines before and after the Balmer jump.

4. About the gradient of the magnetic field

Our model does not predict a significant gradient of the field as a function of
depth. If we assume a thickness of the atmosphere of 103 km, then the maximal
difference of the magnetic surface field on the extreme levels amounts to 25 G.
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Figure 4. Distribution of the magnetic field strength over the surface
represented by iso-magnetic lines of the radial
magnetic field strength. Division into 20 equal steps
between the positive and the negative poles with
the polar strength of Bp = 14.5 kG.
Top: Pseudo-Mercator map with four magnetic extrema

of alternative polarity
Bottom: Globes for four rotation phases
Solid lines - positive regions; dashed lines - negative regions
(Computer program written by E. Gerth)
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Figure 5. Distribution of the field strength by 4 point-like sources
inside the star on different levels of the radius under the surface.
The iso-magnetic lines characterize the map on each radial
shell between the (internally computed) maximum and
minimum of the field strength. Difference divided in 20 steps.
Solid lines - positive regions
Dashed lines - negative regions
(Computer program written by E. Gerth)
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Figure 6. Location of young stars (white circles) of type TTau
in the Herzsprung-Russell-diagram and of βCrB
(black circle)

This has been calculated with the program used by ours, inserting the radii on
the surface and the radius 1000 km higher.

The change of the field structure with depth, starting from the surface, goes
at first rather slowly, as we can see in Fig. 5. This result does not contradict
to a suggestion given by Wolff (1978), who assumes a significant gradient of
the magnetic field by the depth. The slow course changes strikingly at 0.3 of
the stellar radius, where the sources are located at points of singularity. In the
infinitesimal vicinity of the singularities the field strength rises up to infinity.
Closer to the center the field strength changes the polarity but has a similar
structure on an inner sphere at 0.1 R.

This is correct for real point-like sources, as in case of electrical charges.
However, the analogy between electrical and magnetic charges has its limitations.
The closed magnetic lines of force have no singularity at all. Therefore, the inner
structure of the magnetic field is not simply founded on a few magnetic sources.
Nevertheless, it demonstrates the continuity of the magnetic field transiting
through every shell of the sphere embedded in the surrounding space.
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The magnetic charges as virtual sources render a powerful heuristic ap-
proach for the calculation of the magnetic field structure, which gives an advan-
tageous base for programming and fits the better to the reality the more the
distance from the singularities increases.

5. Conclusion

We draw the conclusion, that our model – as well as stated in the paper of
Bagnulo et al. (2000) – yields a small angle of the rotation axis to the line
of sight (≈13o) and a large angle (≈90o) to the plane spanned by the dipoles.
With the construction of an irregular quadrupole model the contradiction of the
calculated Be- and Bs-curves could be overcome.

In present time the hypothesis of a relict origin of the stellar magnetism
in CP stars is commonly supported. However, in this case the structure of a
field similar to that of βCrB is hardly possible. Such a structure might easier
be explained by the hypothesis of a magnetic dynamo. If we locate this star on
evolutionary tracks, then we can see that its way passes the early stages of the
evolution through regions occupied by TTau stars; that means, the star could
have passed in its early stages a phase of convective instability, when a magnetic
field could have been generated. In this case we do not observe at βCrB the
original relict field, but a secondary one, generated by the effect of a stellar
dynamo. In Fig. 6 the Hertzsprung-Russell-diagram, taken from the paper
of Palla & Stahler (1994), is demonstrated, in which the evolutionary tracks
of early stars, TTau stars, and that of βCrB are drawn. From this diagram we
can see too, that obviously, all CP stars with masses M < 2M¯ (Te ≈ 9000 K),
i.e. SrCrEu type stars, went in past tense through a convective phase.
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