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Modeling and mapping of magnetic stars
on the base of field sources
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Abstract. Models of magnetic stars are constructed by the method of the magnetic charge
distribution (MCD). The surface magnetic field is the linear summation of the vector components
of the individual fields of virtual magnetic monopoles, which combine to magnetic dipoles and
multipoles. The MCD method relates to the construction of a vector field out of its sources
and vortices, which is comfortable for progamming on a computer and possesses a wide range of
applicability. The modeling is realized for the straightforward calculation by a computer program,
which fits the calculated phase curves to the observed ones by variation of parameters and iterative
least squares optimization. The magnetic map of the star is drawn for the surface field accounting
for all four Stokes parameters. From the map the phase curves and the (geometrically caused)

profiles of the spectral lines are derived.
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1. Introduction

The distribution of the magnetic field of a star over
its surface is covered from observation by many in-
formation deforming processes. For the reconstruc-
tion of the original surface distribution from the final
observational values all these processes have to be
inverted. The difficulties bound to the generally ill-
posed inverse problem are well-known and have been
considered by Khokhlova et al. (1986).

In contrary to this a straightforward calculation
can be carried out in any case. Assuming physically
reasonable conditions we use only a few parameters to
construct a magnetic map at the surface of the star,
which will be improved by iteration.

At first a model will be constructed using rea-
sonable but, nevertheless, arbitrary parameters. For
this task Bagnulo et al. (1996, 1998, 1999) have de-
veloped independently of ours a method using for the
calculation of the surface field spherical harmonics.
The field strengths at the magnetic poles are taken
as the parameters.

On the contrary, we calculate a polar magnetic
field strength and use magnetic charges as initial
parameters. All these minimize the parameter set.
The MCD method has been described (Gerth et al.
1997; Gerth, Glagolevskij 2001) and applied (Gerth et
al. 1998, 1999; Gerth, Glagolevskij 2001; Glagolevskij
et al. 1998a,b,c) by the authors. Khalack et al. (2001,
2002, 2003) also used this method. This paper is re-
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stricted to the theoretical foundation of the method
in order to give an additional information about the
theoretical magnitude background.

2. Theory and -calculation of stellar
magnetic fields

The calculation of magnetic fields in stars has an old
history. The first who used spherical harmonics for
the formulation of the magnetic field structure on the
surface of a star was A. J. Deutsch (1970). We refer
here especially to the papers of Oetken (1977, 1979),
who modelled the star as an equatorially symmetric
rotator. Oetken relates to Krause and Radler (1980),
who attempted to calculate the magnetic field struc-
ture of a star as generated by the action of a dynamo.

The solution of the hydromagnetic differen-
tial equations of the dynamo is displayed as a series
of Legendre functions. However, although the mathe-
matical treatment using Legendre polynomials yields
an analytical function for the surface field and a fit to
observations, it conceals the physical meaning of the
coefficients and the origin of the magnetic field. Of
special interest are, obviously, the eigenvalues as the
solution of the Legendre differential equation, which
we acknowledge as the intrinsic source of the mag-
netic field.

The magnetic field, of course, originates in the
interior of the star and penetrates the spherical sur-
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face of the star’s atmosphere. Only from this location
the magnetic field can be observed by the Zeeman
displacement of spectral lines. The mapping of the
surface field is the two-dimensional cartographic ar-
rangement of the magnetic features of the outermost
layer of the star. Any assumption about structure of
the inner magnetic field on account of surface field
data demands physical basing. In any case we have
to take the whole spatial distribution of the field into
account. The magnetic field itself is a vector field,
which is defined completely by its sources and vor-
tices. If we know the magnitudes and the spatial lo-
cations of them we can calculate the components of
the field vector in any point of the surrounding space.

Sources and vortices constitute different kinds
of field generators. Sources exist as individual
monopoles, from which the field lines diverge radially,
whereas whirls are circulated by closed field rings with
a left or right handed rotation around an axial vector.
The interaction of both sources and vortices is gov-
erned by Maxwell’s equations and Ohm’s law (Rédler
1995), which gives the condition for the excitation of a
dynamo in the electro-conducting turbulent medium
of the star. This is well established for the Sun.

The magnetic stars, which we investigate, are
mainly A stars. They show a very quiet behavior
without turbulence, so that a dynamo mechanism
cannot act. Obviously, we have to deal with a long-
living permanent magnetism.

We restrict the following considerations of the
magnetic field structures in stars only to the station-
ary state, which is relevant for mapping. In stationary
conditions sources or vortices can exist separately.

According to Maxwell’s laws, the stationary mag-
netic field is represented only by the vortices. Indeed,
the construction of the magnetic field by vortices is
possible but rather complicated for conception and
calculation. The spherical field of a point-like source
is much more better suited for the calculation. For a
real magnetic field, the field vector B in absence of
sources is expressed by the relation

divB = 0. (1)

This means, that the magnetic field lines are closed
and have neither a beginning nor an ending point.
Thus, magnetic monopoles do not exist in reality.
However, such a magnetic dipole is self-consisting like
an electric dipole of two oppositely signed charges.
We formally call a magnetic field a dipole one be-
cause of its components behave like components of
electric dipole field. This magnetic field is such as if
created by two virtual magnetic charges. In Fig. 1 the
magnetic field structure of a circulating electric cur-
rent is compared with the dipole field of two magnetic
charges of opposite polarity.

The magnetic dipole is a real physical quantity

with a magnetic moment
M=Ql, (2)

where () is the “magnetic charge” and [ is the length
difference of the dipole center between the two charge
locations. Thus the magnetic moment is a vector and
undergoes all rules of vector algebra. This has the fol-
lowing consequences:

1. The magnetic moment produces a magnetic field
environment of dipole structure.

2. Spatial vector fields of dipoles superpose by vector
addition.

3. The sum of several magnetic moments at the same
location yields a resultant magnetic moment, main-
taining its environmental dipole structure.

4. The length 21 spanning the distance between the
virtual magnetic charges is an infinitesimal quantity
! — 0 for the mathematical dipole, but it can take on
real significance for separated charges as realized in
form of a rod magnet.

5. The virtual magnetic charges of dipoles and multi-
poles may formally be treated like separated individ-
ual field sources with arbitrary spatial distribution —
provided the coupling of pairs with opposite sign and
the sum of all charges @; being zero according to (1)
is preserved:

ZQiZO (3)

Exploiting the numerical advantages of the point-
like sources, we should not abandon at all the calcu-
lation of the magnetic field by vortices. We will do
this for completeness. In practice, however, we relate
to the comfortable magnetic charges.

3. The physical significance of magnetic
charges

The treatment of the magnetic charges as individ-
ual and separated field sources renders an important
advantage because the arrangement of the locations
in the star’s body becomes very simple: each location
of a charge is determined by 3 spatial coordinates.
Fig. 2 illustrates the arrangements of the location of
a source and the coordinated field vectors in Carte-
sian and spherical coordinates.

The magnetic moment of the dipole as a vector
is defined by 2 point locations or 6 coordinate values.
There is no restriction to a mathematical dipole (with
I — 0) or to any spherical or axial symmetry. Dipoles
and multipoles might be decentered anyhow. Even
sunspots as narrowly located sources under the Sun’s
surface may be described easily.

Equation (2) is derived for a magnetic dipole.
However, it might be understood also as the magnetic
moment M; of a single charge @); in the distance ;
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Figure 1: Demonstration of a dipole with virtual sources.
An electric current flowing through a loop produces a magnetic field configuration with closed lines of force
(solid lines), which penetrate the plane of the loop without crossing. The diverging lines of force (dotted lines)
can be traced back to their origin as if it was a dipole with virtual sources — in analogy to virtual images in
optics. The approximation of a dipole with virtual sources is the better, the more the quotient R/r increases.

from the center of the sphere. By this way the advan-
tage of the spatial arrangement of magnetic charges
is preserved. Then the magnetic dipole moment M,
is the vector sum

M;=Qilh + Qb with Q2 = — Q1. (4)

But now we have to distinguish between poles and
charges. The field strength at the poles, which we
reduce from observation, is not a primary magnitude
but only a derived one. The primary magnitude is the
magnetic moment M = QI from which all other mag-
nitudes of the magnetic field are derived. These mag-
nitudes have often been confused, so that the physical
dimensions of them should be born in mind.

The magnetic field strength B = uH (B — mag-
netic induction, H — magnetic field strength, y —
magnetic permeability) is usually measured by as-
tronomers in gauss. Not differing from this habit, the
magnetic charge at the center of a sphere of radius R
with the field strength B at the surface is

Q = 47R?|B|. (5)

Then the physical dimension of the magnetic charge
is

field strength x surface area

(or in units: gauss- m?).
Likewise, the dimension of the magnetic moment is

field strength x volume

(or in units: gauss - m?):
4
3
The magnetic charge produces a central symmetric
potential U at the surface of the sphere of the radius

M| = Z7RY| B, (6)

R:

_ @
- = (7)

If the charge is displaced from the center of the
star, the polar coordinates (radius r, longitude ¢,
latitude J) determine its point of location. Then by
transformation to Cartesian coordinates

L = T €oSd CoSs p,
y = rcosdsin g, (8)
z =71 8ind,

we have with @ = r/R as the fraction of the star’s

radius the distance from the center to the i-th point
of the source

r? = R?[(cos d cos ¢ — a; cos §; cos ;)% +
+(cos § sin ¢ — a; cos §; sin ;)% +
+(sind — a; sin 62-)2]. 9)
The potential of the i-th charge is

I (10)

47TTZ'.

The potentials of several charges are superposed lin-
early:

U=> U (11)

Especially the potential Uy of a dipole with the charge
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Figure 2: Geometry of a point-like source in a sphere.
The star is orientated in the Cartesian coordinate system with its rotation axis coinciding with the z-coordinate,
at which the observer looks by the inclination angle i. The origin point of the field is located in spherical
coordinates ¢ (longitude), 6 (latitude), v (radius-fraction), corresponding to equations (8), in the distance r /R
from the center of the sphere with radius R.
The three orthogonal components B,, B,, Bs of the field vector in the center of the surface element AS are
given by equations (18).

Q@ and r4,r_ for each source is given by

_ Q
Ua= dr(1/ry —1/r_)" (12)

4. Construction of a potential field of a
magnetic charge

From the scalar potential U the field strength is de-
rived by the linear differential operator gradient

B = —gradU. (13)

The gradient is a vector of 3 components, which
span a space with 3 orthogonal unity vectors as Carte-
sian or spherical coordinates.

In Cartesian coordinates x, y, z we have with the
unity vectors i, j, k the gradient

ou, oU, oU

dU = —i+ —j+ —k. 14
gra 8x1+8y']+82 (14)
Likewise, we have for each point of the sphere in the
polar orthogonal system of radius r, longitude ¢ and
latitude § the gradient

oU dr

ou dr, ou
or dz'

8Ug.
or dxl

dU = —
gradU Ee dy‘]

(1)

If we consider only the one-dimensional case using
for the polar coordinates the radius r and simplify
the constant with the charge @ to C = —%, then
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the potential

U= _¢ yields the gradient (16)
T

U C

dr  r2 (17)

The differential quotients, that give the gradient
along the 3 orthogonal polar coordinates, are:

B, = 9U/dr = (C/r3)[cos §(cos ¢ + sin ) + sin §]
B, = 3U/dp = (aC/r®) cos (cos p — sin ) (18)
B; = 0U/36 = (aC/r?)[cos § — sin §(sin ¢ + cos )]

These equations are the basic relations for the cal-
culation of the magnetic field strength distribution
over the star’s surface for a single monopole. The dif-
ferential quotients represent the 3 coordinates of the
magnetic field at the surface of the star, which con-
stitute the field vector. The mapping of the magnetic
surface structure relates to these values.

5. Construction of a magnetic vortex
field

A real magnetic field is a combination of different
fields of dipoles and vortices, which superpose lin-
early. Like the gradient for the magnetic dipole, the
calculation of the field strength for the magnetic vor-
tex is based on the linear differential operator curl.

A vortex constitutes the closed magnetic lines of
force around an axial vector with origin at spherical
coordinates 7, ¢, 0 and direction determined by the
spatial motion of an electrical charge through Carte-
sian space. The three vector components of the elec-
trical current I, with origin at Cartesian coordinates
z, y, z on the sphere with radius r, can be written
in spherical coordinates also with three parameters:
the magnitude of the current I, and A, the horizontal
component and ¢, the azimuthal component.

The field strength of a vortex is derived by the
vectorial differential operator:
curll = (% — 5 )it (Gl — 2Ly j+ (52 - Ok )k

(19)
The partial differential quotients of the Cartesian
components of the current, I, I, I., are calculated
in the same manner as the differential quotients of
the potential U corresponding to equation (5) with
terms like equation (18).

6. Algorithms for sources, vortices, and
spherical functions

Stationary fields can be calculated only by means of
dipole fields. Therefore, the algorithm of the gradi-
ent is the most important one that we use for the

construction of stellar magnetic fields. In the case
of a dipole, a superposition of two monopole fields
of opposite sign takes place. Therefore, the algo-
rithm of the monopole is run twice, summing the
field values corresponding to the surface coordinates
in the element boxes. The summation of the fields of
monopoles can arbitrarily be continued. For magnetic
fields the pair-like combination of magnetic charges
has to be obeyed, because the sum of the charges
must be zero.

The differential operators grad and curl have been
programmed for a computer as standard algorithms,
which are embedded in the framework of an entire
complex program for the computation of the magnetic
structure in the surrounding space. It should be em-
phasized, that the structure of the magnetic field on
the surface of the star’s sphere for magnetic mapping
is only a special case of the field on a spherical plane
in the spatial field distribution. In this respect the
MCD method is more general than the computation
of the surface field by spherical harmonics (Legendre
functions).

In order to compare the methods, the authors
have programmed also the computation of the sur-
face field on the base of spherical harmonics. The an-
alytical formulation we have got courtesy to Profes-
sor Rédler from the Astrophysical Institute Potsdam.
The algorithm for Legendre’s polynomials P/ is gen-
eral for the degree ¢ and the order index p and can
be evaluated up to the limiting accuracy of the com-
puter. It is called in the same program as those of the
sources and vortices.

Interestingly, the physical meaning of the coeffi-
cients of Legendre’s polynomials can easily be deter-
mined and thus identified by graphical comparison
of the calculated magnetic maps. For the calculation
of magnetic fields, it turns out that the coefficients
are magnetic moments, which can be expressed by
dipoles, quadrupoles etc., i.e., with special arrange-
ments of magnetic charges. The surface of the star is
occupied by the magnetic field, which might be cal-
culated by any of these mentioned methods. Rédler’s
method shows very strikingly, that all magnetic fields
can be constructed also on the base of combinations
of elementary magnetic dipoles, whose field vectors
superpose linearly.

The MCD method resorts only to magnetic
monopole charges and uses for the calculation of the
spherically symmetric magnetic field in the surround-
ing space of a point-like source as the elementary algo-
rithm the gradient of the potential. By this method all
configurations of a magnetic body with a stationary
magnetic field can be constellated completely, ren-
dering the algorithms of the vortex and the spherical
harmonics dispensable.

For the practical calculation with a computer the
surface has to be divided in n - 2n surface elements,
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which are arranged as a quadratic matrix with the
rank 2n. Using the normal coordinates, the longitude
is divided in 2n and latitude — in n parts, corre-
sponding to the cartographical arrangement of a Mer-
cator map. The 3 components of the magnetic field
vector are calculated for each individual monopole
and then stored in the element boxes of the matrix,
from where they may be recalled for further computa-
tions. For the superposition of the fields of numerous
monopoles (or vortices), the already calculated field
values are recalled, then added to the actual values of
a next monopole field, and the sum will be restored
again. This procedure continues successively, using
only the elementary algorithms for each calculation
of a monopole, a vortex or a term of the expansion of
spherical harmonics.

7. Observation of the integral radiation
from the star

The calculation of the magnetic field strength renders
a triple of values to every point of the stellar surface.
However, the visibility of such a surface point depends
on a lot of conditions bound to geometry, phase and
physics of the star. In numerical computation such
point is the center of an element.

The resultant values of the magnetic field
strengths distributed over the stellar surface repre-
sent the map of the star B(p,d). The globe of the
star is seen by the observer under different aspects,
caused by its rotation and the inclination ¢ to the
rotational axis. Besides of this, the visible disk is “vi-
gnetted” (shaded off gradually to the edge like an
overlaid vignette) by the limb darkening according to
the empirical formula with € denoting the angle from
the center of the disk

k=1-—0.4cose. (20)

We mention marginally that this simple formula
(20), which is valid approximately for a gray atmo-
sphere, might be replaced by a more serious procedure
regarding the radiation transfer process. The transfer
function k(e) depends also on the wavelength and the
polarization.

For the visibility of the star by the observer we
define a window function W (i, €, d, ), containing the
inclination 4, the projection of each surface element
to the line of sight, and the limb darkening with its
angular distance e from the center of the visible disk,
which averages and normalizes the magnetic map dis-
tribution function B(yp,d):

w/2 21

I [ B(,9)W(i,e, 0, — t)dpdd
d=—m/2¢=0
Beff(t) = wj; o

| ] W(ie, d,¢—t)dedd
d=—7/2 ¢=0

(21)

This is the general relation between the mag-
netic field map and the observable integral radiation
fluz of any magnitude over the visible stellar surface,
which we use especially for the magnetic field with all
its vector components. The integral formula gives the
integral mean of the disk seen by the observer and
comprises the convolution integral, which represents
the rotation of the star with its map B(p,d) behind
the window W (i, €, d, ¢). The magnitude t character-
izes the rotation at the time of the momentary ori-
entation angle as a function of time. This is the inte-
gral phase curve of the effective field strength B, or
the mean surface magnetic field Bs. The denominator
makes the normalization. For the numerical calcula-
tion we replace the integral transformations by matrix
multiplication. The map is discretised into surface ar-
eas as matrix elements, each element representing the
integral mean value of this area.

8. The effective magnetic field B, and
the mean surface field B,

The magnetic field strength, which the observer mea-
sures by the Zeeman splitting of spectral lines, is the
result of

e projection by the coordinate orientation,

e weighting by different areas of the elements
and

e shading by limb-darkening.

The resulting vector of the magnetic field obtained by
integration over the visible disk of the star is orien-
tated anyhow, but only the projection to the line of
sight to the observer gives the so called “longitudinal
field vector” B, which is the average value of the
radiation from all visible elements influenced by the
above mentioned conditions. Its absolute value is the
mean surface field Bs as the magnitude of the vis-
ible integral field strength. The averaging rises some
physical problems which we have to consider in the
following.

Usually we measure the (effective) stellar mag-
netic field from the Zeeman displacement of the
gravity centers of the line profiles of oppositely cir-
cularly polarized light. What we call the “ef fective
magnetic field” B, is not a mean value but already
the result of weighting and convolution of the radi-
ation flux containing the magnetic field information
about the form and the position of the profiles of all
surface elements. In principle, the transfer of the flux
through the atmosphere has to be treated correctly
by the methods of radiation transfer theory, rendering
the spectral dependence of the limb darkening.

In our computing program we relate to the fact,
that the gravity center of two profiles of different
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height and position is given by the mean of the cen-
ters weighted by the profile integrals. Thus, we weight
the magnetic field vector, projected onto the line of
sight, of all surface elements with their spherical pro-
jection and limb darkening and integrate them over
the visible hemisphere.

The radial direction of the field vector in every ele-
ment on the surface is given in Cartesian coordinates
with the unity vectors i, j, k and the geographical
coordinates of the longitude ¢ and the latitude J to

a, = a = cos 0 cos i + cos d sin j + sin dk. (22)

The two orthogonal tangential directions to the nor-
mal direction follow by partial differentiation:

a, = 0a/0p = — cosd sin pi + cos d cos ¢j, (23)
as = 0a/00 = —sind cos pi — sin d sin ¢j + cos 0k (24)

The magnetic field vector at the surface of the
star is given in Cartesian coordinates in terms of 3
spherical components B,, B, and Bs:

B = B,a, + B,a, + Bsas. (25)

The magnetic field components are seen from a spe-
cial aspect and are projected onto the line of sight,
giving the vector which we denote as v. For this vec-
tor an equation similar to (22) can be obtained if we
replace p by t and § by 90° — i (i is the inclination
angle and ¢ is the rotation position angle):

v = sin¢ costi + sintsintj — cosik. (26)

The projection of the magnetic field vector related
to each point of the surface is obtained by a scalar
multiplication of the magnetic field vector adjusted
to the vector of the line of sight, this is, with the
spherical components of the field vector B,, B, and
Bys, the scalar product

By = B v = (B,a+ Bya, + Bsa;)v, (27)

which yields the scalar field components related to
the 3 polar coordinates of the surface elements

BV =Bv=
= B,[cosd sini(cospcost + sin psint) —
— sindcosi] +
+ By[cosdsini(cospsint — sinpcost)] +
+ Bs[—sindsini(cos @ cost + sin psint) —
— cosd cosil. (28)

This projection of the magnetic field B onto the as-
pect vector v allows the calculation of the longitudi-
nal magnetic field B,. The components of the vector
undergo the averaging by the integral equation (21).
The result is the longitudinal magnetic field strength,
which we call the “effective” field Bgg. This is the
magnitude we measure by the Zeeman displacement
of the right- and left-handed circularly polarized light.
By this way it turns out that equation (28) proves to

be the Stokes parameter V, multiplied by the inten-
sity 1.

9. The magnetic field in polarized light
(Stokes parameters I, Q, U, V,)

Likewise, we can calculate the projection onto the
plane perpendicular to the line of sight, if we draw
the scalar products of the two orthogonal directions
to the vector v in equation (26), including all 4 com-
ponents of the so-called “Stokes vector”. Thus, also
the linear polarization is respected. The two perpen-
dicular vectors to v are found by permutation of the
unity vectors i, j, k :

q = sinisinti — cosij + sini cos tk, (29)
u = — cosii+ sini sin ¢j + sin i cos tk. (30)

Thus, the linear field components of the linear polar-
ization, namely the Stokes parameters Q and U, are
derived also by scalar multiplication:

By=Bq=
= B,(cosdcospsinisint — cosd sin g cosi +
+ sindsinicost) +
+ B,(—cosdsinpsinisint — cosd cosp cosi) +
+ Bs(—sind cospsinisint + sindsin g cosi +
+ cosdsinicost), (31)

By =B u=
= B,(—cosd cosp cosi + cosd sin g sinisint +
+ sindsinicost) +
+ B,(cosd sin ¢ cosi + cosd cos g sinisint) +
+ Bj(sind cos ¢ cosi — sindsin psinisint +
+ cosdsinicost). (32)

The components Bq, By, and By represent three
of the 4 Stokes parameters I, Q, U, and V, constitut-
ing the Stokes vector, which describes the polariza-
tion condition of the light as electro-magnetic radia-
tion (Stokes 1852)

I =v@*+U?+V?

Q =TI cos 20 cos 20

—intensity (33)
— first linear polarization

U =1cos 20 sin 20  — second linear polarization
V =1sin 243 — circular polarization

© — position angle of the ellipse;

[ — relation of the axes.

The intensity I is the 1-st Stokes parameter, which
is derived from the squares of the linearly and circu-
larly polarized components Q, U, and V.

The mean magnetic field strength for a surface
element is the square root of the intensity, namely

Bmean Y, Bg + qu + B’% (34)
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This formula coincides formally with the surface
field Bs, equation (19). However, the results differ sig-
nificantly, because the weighing, shading and integra-
tion relate in the first case to the total field vector but
in the second case — to the components separately.

If we take out of equation (34) only the Q and U
components,

Bcross =1/ Bg + B% 3 (35)

then the plane of the crossed linear polarization per-
pendicularly to the line of sight comes in view. B, oss
multiplied with the rotational velocity vsini is an ob-
servable magnitude by the line profile and is called
by Bagnulo et al. (1996, 1999, 2000) the “crossover”.

10. The distribution of the magnetic
field over the surface (magnetic

mapping)

The calculated distribution of the magnetic field over
the surface can be represented graphically. Thus a
cartographic map of the star is drawn with topo-
graphical features of the magnitudes. Areas of the
magnitudes are distinguished by colors and/or iso-
lines. The isolines — iso-magnetic lines, contours with
equal magnitude of magnetic field strength — are ar-
ranged as closed lines around the poles, which mark
the most characteristic features of the map.

Mapping of a sphere is always a graphical prob-
lem. The plane (rectangular) projection corresponds
well to the matrix arrangement of the surface ele-
ments. In Fig. 3 we demonstrate the mapping by a
plane projection, which gives an overlook of the en-
tire spherical surface of the star but has an exten-
sion of the longitude towards the poles. The sphere
of the star is better shown in the correct perspec-
tive by transforming the coordinates into the ortho-
graphic equatorial projection. In this case only one
half of the sphere can be seen so that the two oppo-
site hemispheres of 180 longitude difference give all
surface information.

11. Surface inhomogeneities

In reality the clear composition of magnetic and ve-
locity fields is disturbed very much by surface in-
homogeneities, which could be related to different
causes. Important is only the fact, that we measure
the fields by the form and the shift of the spectral
lines, which belong to special elements distributed
over the surface spotty-like. If an area on the star
surface does not contain the investigated chemical el-
ement, then its magnetic field cannot be reflected in
spectral lines of this element. Processes of integration
and averaging of magnetic field over the total visible

stellar disk smear and hide all local features almost
hopelessly.

We call these stars with their strange spottiness
chemically peculiar (CP-stars). However, in the case
of the magnetic stars we can preconceive something
about the distribution of the elements over the sur-
face on the base of the diffusion theory. The magnetic
field itself distributes the elements due to magnetic
properties of the atoms around the magnetic poles.
This means that magnetic and transmittance inho-
mogeneities in the star are not only formally but also
physically connected. The pole region is usually also
a region of concentration or depletion of elements,
from which the radiation with the spectral informa-
tion about magnetic field and velocity goes out. This
gives the possibility to describe also the element dis-
tribution like a cartographic map with only a few pa-
rameters: we determine the center of the spot and
calculate the surrounding environment by a distribu-
tion function. For the first approximation, different
mathematical functions are suited, e.g., the rectangu-
lar or triangular function, the parabola or the Gauss-
function with all combinations, which could simulate
the physical spot profile. The procedure of setting
spots onto the surface is additive, so that arbitrary
transfer features may be constructed. The authors in-
tend to report on this object in a later publication.

The element distribution in the stellar atmosphere
acts like a filter, which transmits the spectral infor-
mation about the magnetic field, contained in the line
profiles, more or less. Therefore, we can handle the
element distribution like a transfer map covering the
radiating surface of the star.

In the program a fourth component is foreseen for
the radiative transfer factor, which allows photomet-
ric modelling and weighting of the magnetic radiation
by multiplication.

12. Decentered dipoles

Landstreet (1970) introduced the model of the decen-
tered dipole for the explanation of the observational
fact, that the phase curves of the effective magnetic
field (e.g., for 53 Cam) show a flat extremum at one
pole and a sharp extremum at the other one. By this
way the most probable dipole in the oblique rotator
model could preserved without resorting to any mul-
tipole structure. Indeed, the phase curves could be
explained well by this assumption. Only the physi-
cal explanation was not quite satisfactory. Neverthe-
less, the calculation of the magnetic field by the MCD
method may be performed easily, setting only the pos-
itive and the negative magnetic charges at the loca-
tion to which the dipole is shifted from the center.
A striking example for a magnetic dipole ex-
tremely removed from the center is a sunspot as we
demonstrate in Fig. 6. We take the umbra as the exit
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Figure 3: Mercator map of the magnetic field with the surface elements arranged as a matrix.
Parameters:
Charge Longitude Latitude Radius-fraction
Q1 =+1 p1 = 90° 61 = +45° r; =0.1
QQ =-1 Y2 = 270° (52 = —45° ro = 0.1
The magnetic charge QQ and the radius v are given in relative units. Spherical representation of the map with
the phases 0.25, 0.5, 0.75, and 1.00.

of the magnetic field generated by a magnetic charge  lated by the program using the MCD method (Gerth
@ under the surface and locate in some distance I & Glagolevskij 2000).

from it a second one of opposite polarity, then a ly-
ing on the surface magnetic dipole corresponding to
equation (2) is constructed, whose field may be calcu-

The magnetic source can be even remotely decen-
tered as in the case that the source is located out-
side the star. Then the main star of a binary system
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Figure 4: Mercator-map globe of the global magnetic surface field of a solar-like spot as an example of an

extremely decentered magnetic dipole.
Solid lines — positive region,
dotted lines — negative region.

Parameters:

Charge Longitude  Latitude Radius-fraction
Q1 =+1 ¢ =170° § =27.5° r; =0.88
Q:=-1 ¢ =190° §5 = 32.5° 719 =0.92

Figure 5: Scheme of the opposition of a main star with its magnetic companion in a close binary system. The
magnetic dipole is located outside the main star on the orbit and has no rigid connection.

is influenced by the magnetic field of a companion,
as shown in Fig. 7. The magnetic field of the v Cep,
detected by Scholz (1980, 1981), which could rarely
preserve its magnetic field for physical conditions of
a supergiant, is a candidate for such an indirect mag-
netic influence (Gerth et al. 2003).

All magnetic field configurations can be rep-
resented with arrangements of numerous magnetic
dipoles (Gerth & Glagolevskij 2002).

13. Conclusions

The magnetic dipoles are regarded as the original
sources of magnetic fields. However, this model can
only describe the magnetic field structure without
any distortion by the inhomogeneous distribution of
chemical elements over the star’s surface. The com-
plexity of the structure of stellar magnetic fields leads

to a very complicate entanglement of a lot of influ-
encing magnitudes, conditions and procedures, which
makes the inverse derivation of the map out of the ob-
servational measuring data extraordinarily difficult.
The straightforward calculation is a valuable strat-
egy to see already in advance what there is possible
and how the map, the phase curve or the profile have
to look. The method of modelling the magnetic field
by the Magnetic Charge Distribution (MCD) offers
a crucial advantage over the traditional calculation
using spherical harmonics. The potential field is de-
rived from its sources and calculated for the entire
surrounding space including any plane like the sur-
face of a sphere, whereas the calculation by an ex-
pansion of spherical harmonics with central dipoles,
quadrupoles etc. is limited to the surface of the sphere
and lacks of the physical meaning of the coefficients.
The sources of the potential are the generating mag-
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nitudes as eigenvalues, from which a vector field like
the magnetic field is derived. Therefore, the magnetic
charges on point-like potential sources with its spa-
tial coordinates are used as parameters. The mapping
of a magnetic star can be carried out on the basis of
mathematical treatment of a model of a star with few
parameters in a straightforward calculation. A suited
program is used as a tool, which enables the fitting
of the calculated phase curves to the observational
data and reduces the modeling of the magnetic field
structure to the field sources.
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